1.Pharmacological effects of Yindan Pinggan capsules in treating intrahepatic cholestasis
Shu-xin CAO ; Feng HUANG ; Fang WU ; Rong-rong HE
Acta Pharmaceutica Sinica 2025;60(2):417-426
This study aimed to investigate the therapeutic effect of Yindan Pinggan capsules (YDPG) on intrahepatic cholestasis (IHC) through animal experiments, while utilizing network pharmacology and molecular docking techniques to explore its potential mechanisms. Initially, the therapeutic effect of YDPG on an
2.THBS4 in Disease: Mechanisms, Biomarkers, and Therapeutic Opportunities
De-Ying HUANG ; Yan-Hong LI ; Xiu-Feng BAI ; Yi LIU
Progress in Biochemistry and Biophysics 2025;52(9):2217-2232
Thrombospondin 4 (THBS4; TSP4), a crucial component of the extracellular matrix (ECM), serves as an important regulator of tissue homeostasis and various pathophysiological processes. As a member of the evolutionarily conserved thrombospondin family, THBS4 is a multidomain adhesive glycoprotein characterized by six distinct structural domains that mediate its diverse biological functions. Through dynamic interactions with various ECM components, THBS4 plays pivotal roles in cell adhesion, proliferation, inflammation regulation, and tissue remodeling, establishing it as a key modulator of microenvironmental organization. The transcription and translation of THBS4 gene, as well as the activity of the THBS4 protein, are tightly regulated by multiple signaling pathways and extracellular cues. Positive regulators of THBS4 include transforming growth factor-β (TGF-β), interferon-γ (IFNγ), granulocyte-macrophage colony-stimulating factor (GM-CSF), bone morphogenetic proteins (BMP12/13), and other regulatory factors (such as B4GALNT1, ITGA2/ITGB1, PDGFRβ, etc.), which upregulate THBS4 at the mRNA and/or protein level. Conversely, oxidized low-density lipoprotein (OXLDL) acts as a potent negative regulator of THBS4. This intricate regulatory network ensures precise spatial and temporal control of THBS4 expression in response to diverse physiological and pathological stimuli. Functionally, THBS4 acts as a critical signaling hub, influencing multiple downstream pathways essential for cellular behavior and tissue homeostasis. The best-characterized pathways include: (1) the PI3K/AKT/mTOR axis, which THBS4 modulates through both direct and indirect interactions with integrins and growth factor receptors; (2) Wnt/β-catenin signaling, where THBS4 functions as either an activator or inhibitor depending on the cellular context; (3) the suppression of DBET/TRIM69, contributing to its diverse regulatory roles. These signaling connections position THBS4 as a master regulator of cellular responses to microenvironmental changes. Substantial evidence links aberrant THBS4 expression to a range of pathological conditions, including neoplastic diseases, cardiovascular disorders, fibrotic conditions, neurodegenerative diseases, musculoskeletal disorders, and atopic dermatitis. In cancer biology, THBS4 exhibits context-dependent roles, functioning either as a tumor suppressor or promoter depending on the tumor type and microenvironment. In the cardiovascular system, THBS4 contributes to both adaptive remodeling and maladaptive fibrotic responses. Its involvement in fibrotic diseases arises from its ability to regulate ECM deposition and turnover. The diagnostic and therapeutic potential of THBS4 is particularly promising in oncology and cardiovascular medicine. As a biomarker, THBS4 expression patterns correlate significantly with disease progression and patient outcomes. Therapeutically, targeting THBS4-mediated pathways offers novel opportunities for precision medicine approaches, including anti-fibrotic therapies, modulation of the tumor microenvironment, and enhancement of tissue repair. This comprehensive review systematically explores three key aspects of THBS4 research(1) the fundamental biological functions of THBS4 in ECM organization; (2) its mechanistic involvement in various disease pathologies; (3) its emerging potential as both a diagnostic biomarker and therapeutic target. By integrating recent insights from molecular studies, animal models, and clinical investigations, this review provides a framework for understanding the multifaceted roles of THBS4 in health and disease. The synthesis of current knowledge highlights critical research gaps and future directions for exploring THBS4-targeted interventions across multiple disease contexts. Given its unique position at the intersection of ECM biology and cellular signaling, THBS4 represents a promising frontier for the development of novel diagnostic tools and therapeutic strategies in precision medicine.
3.Mechanism of Naoxintong Capsules in treatment of rats with multiple cerebral infarctions and myocardial injury based on HIF-1α/VEGF pathway.
Xiao-Lu ZHANG ; Jin-Feng SHANG ; Yin-Lian WEN ; Gui-Jin-Feng HUANG ; Bo-Hong WANG ; Wan-Ting WEI ; Wen-Bin CHEN ; Xin LIU
China Journal of Chinese Materia Medica 2025;50(7):1889-1899
This study aims to explore whether Naoxintong Capsules improve multiple cerebral infarctions and myocardial injury via promoting angiogenesis, thereby exerting a simultaneous treatment effect on both the brain and heart. Male SD rats were randomly divided into six groups: sham-operated group, model group, high-dose, medium-dose, and low-dose groups of Naoxintong Capsules(440, 220, and 110 mg·kg~(-1)), and nimodipine group(10.8 mg·kg~(-1)). Rat models of multiple cerebral infarctions were established by injecting autologous thrombus, and samples were collected and tested seven days after modeling. Evaluations included multiple cerebral infarction model assessments, neurological function scores, grip strength tests, and rotarod tests, so as to evaluate neuromotor functions. Morphological structures of brain and heart tissue were observed using hematoxylin-eosin(HE) staining, Nissl staining, and Masson staining. Network pharmacology was employed to screen the mechanisms of Naoxintong Capsules in improving multiple cerebral infarctions and myocardial injury. Neuronal and myocardial cell ultrastructures were observed using transmission electron microscopy. Apoptosis rate in brain neuronal cells was detected by TdT-mediated dUTP nick end labeling(TUNEL) staining, and reactive oxygen species(ROS) levels in myocardial cells were measured. Immunofluorescence was used to detect the expression of platelet endothelial cell adhesion molecule-1(CD31), antigen identified by monoclonal antibody Ki67(Ki67), hematopoietic progenitor cell antigen CD34(CD34), and hypoxia inducible factor-1α(HIF-1α) in brain and myocardial tissue. Western blot, and real-time quantitative polymerase chain reaction(RT-qPCR) were used to detect the expression of HIF-1α, vascular endothelial growth factor(VEGF), vascular endothelial growth factor receptor 2(VEGFR2), sarcoma(Src), basic fibroblast growth factor(bFGF), angiopoietin-1(Ang-1), and TEK receptor tyrosine kinase(Tie-2). Compared with the model group, the medium-dose group of Naoxintong Capsules showed significantly lower neurological function scores, increased grip strength, and prolonged time on the rotarod. Pathological damage in brain and heart tissue was reduced, with increased and more orderly arranged mitochondria in neurons and cardiomyocytes. Apoptosis in brain neuronal cells was decreased, and ROS levels in cardiomyocytes were reduced. The microvascular density and endothelial cells of new blood vessels in brain and heart tissue increased, with increased overlapping regions of CD31 and Ki67 expression. The relative protein and mRNA expression levels of HIF-1α, VEGF, VEGFR2, Src, Ang-1, Tie-2, and bFGF were elevated in brain tissue and myocardial tissue. Naoxintong Capsules may improve multiple cerebral infarctions and myocardial injury by mediating HIF-1α/VEGF expression to promote angiogenesis.
Animals
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Rats
;
Cerebral Infarction/genetics*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Vascular Endothelial Growth Factor A/genetics*
;
Capsules
;
Signal Transduction/drug effects*
;
Humans
;
Brain/metabolism*
;
Myocardium/metabolism*
;
Apoptosis/drug effects*
4.Construction of core outcome set for clinical research on traditional Chinese medicine treatment of simple obesity.
Tong-Tong WU ; Yan YU ; Qian HUANG ; Xue-Yin CHEN ; Fu-Ming-Xiang LIU ; Li-Hong YANG ; Chang-Cai XIE ; Shao-Nan LIU ; Yu CHEN ; Xin-Feng GUO
China Journal of Chinese Materia Medica 2025;50(12):3423-3430
Following the core outcome set standards for development(COS-STAD), this study aims to construct core outcome set(COS) for clinical research on traditional Chinese medicine(TCM) treatment of simple obesity. Firstly, a comprehensive review was conducted on the randomized controlled trial(RCT) and systematic review(SR) about TCM treatment of simple obesity that were published in Chinese and English databases to collect reported outcomes. Additional outcomes were obtained through semi-structured interviews with patients and open-ended questionnaire surveys for clinicians. All the collected outcomes were then merged and organized as an initial outcome pool, and then a preliminary list of outcomes was formed after discussion by the working group. Subsequently, two rounds of Delphi surveys were conducted with clinicians, methodology experts, and patients to score the importance of outcomes in the list. Finally, a consensus meeting was held to establish the COS for clinical research on TCM treatment of simple obesity. A total of 221 RCTs and 12 SRs were included, and after integration of supplementary outcomes, an initial outcome pool of 141 outcomes were formed. Following discussions in the steering advisory group meeting, a preliminary list of 33 outcomes was finalized, encompassing 9 domains. Through two rounds of Delphi surveys and a consensus meeting, the final COS for clinical research on TCM treatment of simple obesity was determined to include 8 outcomes: TCM symptom scores, body mass index(BMI), waist-hip ratio, waist circumference, visceral fat index, body fat rate, quality of life, and safety, which were classified into 4 domains: TCM-related outcomes, anthropometric measurements, quality of life, and safety. This study has preliminarily established a COS for clinical research on TCM treatment of simple obesity. It helps reduce the heterogeneity in the selection and reporting of outcomes in similar clinical studies, thereby improving the comparability of research results and the feasibility of meta-analysis and providing higher-level evidence support for clinical practice.
Humans
;
Obesity/therapy*
;
Medicine, Chinese Traditional
;
Randomized Controlled Trials as Topic
;
Treatment Outcome
;
Drugs, Chinese Herbal/therapeutic use*
5.Mechanism of Tougu Xiaotong Capsules regulating Malat1 and mi R-16-5p ceRNA to alleviate "cholesterol-iron" metabolism disorder in osteoarthritis chondrocytes.
Chang-Long FU ; Yan-Ming LIN ; Shu-Jie LAN ; Chao LI ; Zi-Hong ZHANG ; Yue CHEN ; Ying-Rui TONG ; Yan-Feng HUANG
China Journal of Chinese Materia Medica 2025;50(15):4363-4371
From the perspective of competitive endogenous RNA(ceRNA) constructed by metastasy-associated lung adenocarcinoma transcript 1(Malat1) and microRNA 16-5p(miR-16-5p), the improvement mechanism of Tonggu Xiaotong Capsules(TGXTC) on the imbalance and disorder of "cholesterol-iron" metabolism in chondrocytes of osteoarthritis(OA) was explored. In vivo experiments, 60 8-week-old C57BL/6 mice were acclimatized and fed for 1 week and then randomly divided into two groups: blank group(12 mice) and modeling group(48 mice). The animals in modeling group were anesthetized by 5% isoflurane inhalation, which was followed by the construction of OA model. They were then randomly divided into model group, TGXTC group, Malat1 overexpression group, and TGXTC+Malat1 overexpression(TGXTC+Malat1-OE) group, with 12 mice in each group. The structural changes of mouse cartilage tissues were observed by Masson staining after the intervention in each group. RT-PCR was employed to detect the mRNA levels of Malat1 and miR-16-5p in cartilage tissues. Western blot was used to analyze the protein expression of ATP-binding cassette transporter A1(ABCA1), sterol regulatory element-binding protein(SREBP), cytochrome P450 family 7 subfamily B member 1(CYP7B1), CCAAT/enhancer-binding protein homologous protein(CHOP), acyl-CoA synthetase long-chain family member 4(ACSL4), and glutathione peroxidase 4(GPX4) in cartilage tissues. In vitro experiments, mouse chondrocytes were induced by thapsigargin(TG), and the combination of Malat1 and miR-16-5p was detected by double luciferase assay. The fluorescence intensity of Malat1 in chondrocytes was determined by fluorescence in situ hybridization. The miR-16-5p inhibitory chondrocyte model was constructed. RT-PCR was used to analyze the levels of Malat1 and miR-16-5p in chondrocytes under the inhibition of miR-16-5p. Western blot was adopted to analyze the regulation of TG-induced chondrocyte proteins ABCA1, SREBP, CYP7B1, CHOP, ACSL4, and GPX4 by TGXTC under the inhibition of miR-16-5p. The results of in vivo experiments showed that,(1) compared with model group, TGXTC group exhibited a relatively complete cartilage layer structure. Compared with Malat1-OE group, TGXTC+Malat1-OE group showed alleviated cartilage surface damage.(2) Compared with model group, TGXTC group had a significantly decreased Malat1 mRNA level and an increased miR-16-5p mRNA level in mouse cartilage tissues(P<0.01).(3) Compared with the model group, the protein levels of ABCA1 and GPX4 in the cartilage tissue of mice in the TGXTC group increased, while the protein levels of SREBP, CYP7B1, CHOP and ACSL4 decreased(P<0.01). The results of in vitro experiments show that,(1) dual-luciferase was used to evaluate that miR-16-5p has a targeting effect on the Malat1 gene.(2)Compared with TG+miR-16-5p inhibition group, TG+miR-16-5p inhibition+TGXTC group had an increased mRNA level of miR-16-5p and an decreased mRNA level of Malat1(P<0.01).(3) Compared with TG+miR-16-5p inhibition group, TG+miR-16-5p inhibition+TGXTC group exhibited increased expression of ABCA1 and GPX4 proteins and decreased expression of SREBP, CYP7B1, CHOP, and ACSL4 proteins(P<0.01). The reasults showed that TGXTC can regulate the ceRNA of Malat1 and miR-16-5p to alleviate the "cholesterol-iron" metabolism disorder of osteoarthritis chondrocytes.
Animals
;
MicroRNAs/metabolism*
;
RNA, Long Noncoding/metabolism*
;
Chondrocytes/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Mice, Inbred C57BL
;
Mice
;
Osteoarthritis/drug therapy*
;
Iron/metabolism*
;
Male
;
Cholesterol/metabolism*
;
Humans
;
Capsules
;
RNA, Competitive Endogenous
6.Performance evaluation of a wearable steady-state visual evoked potential based brain-computer interface in real-life scenario.
Xiaodong LI ; Xiang CAO ; Junlin WANG ; Weijie ZHU ; Yong HUANG ; Feng WAN ; Yong HU
Journal of Biomedical Engineering 2025;42(3):464-472
Brain-computer interface (BCI) has high application value in the field of healthcare. However, in practical clinical applications, convenience and system performance should be considered in the use of BCI. Wearable BCIs are generally with high convenience, but their performance in real-life scenario needs to be evaluated. This study proposed a wearable steady-state visual evoked potential (SSVEP)-based BCI system equipped with a small-sized electroencephalogram (EEG) collector and a high-performance training-free decoding algorithm. Ten healthy subjects participated in the test of BCI system under simplified experimental preparation. The results showed that the average classification accuracy of this BCI was 94.10% for 40 targets, and there was no significant difference compared to the dataset collected under the laboratory condition. The system achieved a maximum information transfer rate (ITR) of 115.25 bit/min with 8-channel signal and 98.49 bit/min with 4-channel signal, indicating that the 4-channel solution can be used as an option for the few-channel BCI. Overall, this wearable SSVEP-BCI can achieve good performance in real-life scenario, which helps to promote BCI technology in clinical practice.
Brain-Computer Interfaces
;
Humans
;
Evoked Potentials, Visual/physiology*
;
Electroencephalography
;
Wearable Electronic Devices
;
Algorithms
;
Signal Processing, Computer-Assisted
;
Adult
;
Male
7.Comparative study on clinical effect of bone cement-strengthened screw fixation in the correction of Kümmell's disease with kyphosis.
Hai-Feng HANG ; Hong-Wei WANG ; Li-Xin CHEN ; Xin-Bing TANG ; Ai-Bing HUANG
China Journal of Orthopaedics and Traumatology 2025;38(3):280-286
OBJECTIVE:
To explore clinical effect of bone cement-strengthened pedicle screw technique in the correction of stage Ⅲ asymptomatic Kümmell disease with kyphosis.
METHODS:
A retrospective analysis was conducted on clinical data of 40 asymptomatic stage Ⅲ Kümmell disease patients admitted between March 2019 and December 2021, including 15 males and 25 females, aged from 61 to 81 years old with an average of (67.4±5.2) years old;according to different surgical methods, they were divided into percutaneous kyphoplasty group (PKP) and reinforced screw group. There were 18 patients in PKP group, including 7 males and 11 females, aged from 61 to 78 years old with an average of (66.2±5.5) years old;the courses of disease ranged from 5 to 12 months with an average of (7.33±1.78) months;bone mineral density(BMD) T values ranged from -2.45 to -4.00 with an average of (-3.08±0.46);2 patients with T8-T9, 10 patients with T10-T12, and 6 patients with L1-L2;treated with PKP. There were 22 patients in reinforced screw group, including 8 males and 14 females, aged from 65 to 81 years old with an average of (68.5±3.8) years old;the courses of disease ranged from 4 to 15 months with an average of (7.86±2.73)months;bone mineral density(BMD) T values ranged from -2.40 to -4.50 with an average of (-3.18±0.54);3 patients with T8-T9, 12 patients with T10-T12, and 7 patients with L1-L2;treated with bone cement reinforced pedicle screw internal fixation combined with kyphoplasty. Cobb angle and anterior margin height of the injured vertebra were compared before operation, 3 d and 12 months after operation. Visual analogue scale (VAS) and Oswestry disability index (ODI) were compared between two groups before operation and 12 months after operation. The incidence of postoperative complications was compared between two groups.
RESULTS:
All patients were followed up, PKP group followed up for 11 to 14 months with an average of (11.97±0.96) months and 10 to 14 months with an average of (12.05±1.09) months in reinforced screw group;there was no significant difference between two groups (P>0.05). Postoperative Cobb angle at 3 days and 12 months in reinforced screw group were (7.34±2.26) ° and (18.86±1.96) °, while in PKP group were (18.88±1.89) ° and (23.28±1.90) °;there were statistical difference between two groups (P<0.05). The anterior margin height of the injured vertebra in reinforced screw group were (25.28±1.33) mm and (19.62±2.22) mm at 3 days and 12 months after operation, while in PKP group were (18.61±2.16) mm and(15.93±1.34) mm;there were statistical difference between two groups (P<0.05). Cobb angle and the anterior margin height of the injured vertebra were significantly improved at 3 days and 12 months after operation between two groups (P<0.05). Postoperative VAS and ODI at 12 months in PKP group were (2.00±0.69) score and (13.44±4.02)%, while in reinforced screw group were(1.91±0.61) score and (10.18±4.26)%;which were significantly lower than (6.89±0.76) score and (36.33±3.40)% in PKP group, (7.23±0.75) score and (37.09±3.73) % in reinforced screw group before operation. There were no difference in postoperative VAS between two groups at 12 months (P>0.05);postoperative ODI in reinforced screw group at 12 months was lower than that in PKP group(P<0.05). There was no significant difference in complications between two groups (χ2=0.071, P>0.05).
CONCLUSION
PKP and bone cement reinforced nail combined with PKP could improve kyphotic deformity and postoperative function, and relieve pain. The application of bone cement-reinforced nail fixation technology could provide a more stable support, more obvious functional recovery, lower the risk of re-collapse of the injured vertebra, and maintain the long-term stability of spine.
Humans
;
Male
;
Female
;
Aged, 80 and over
;
Kyphosis/surgery*
;
Aged
;
Bone Cements
;
Middle Aged
;
Retrospective Studies
;
Pedicle Screws
;
Spinal Fractures/surgery*
;
Fracture Fixation, Internal/methods*
;
Bone Screws
;
Kyphoplasty
8.Micronucleus counts correlating with male infertility: a clinical analysis of chromosomal abnormalities and reproductive parameters.
Shun-Han ZHANG ; Ying-Jun XIE ; Wen-Jun QIU ; Qian-Ying PAN ; Li-Hao CHEN ; Jian-Feng WU ; Si-Qi HUANG ; Ding WANG ; Xiao-Fang SUN
Asian Journal of Andrology 2025;27(4):537-542
Investigating the correlation between micronucleus formation and male infertility has the potential to improve clinical diagnosis and deepen our understanding of pathological progression. Our study enrolled 2252 male patients whose semen was analyzed from March 2023 to July 2023. Their clinical data, including semen parameters and age, were also collected. Genetic analysis was used to determine whether the sex chromosome involved in male infertility was abnormal (including the increase, deletion, and translocation of the X and Y chromosomes), and subsequent semen analysis was conducted for clinical grouping purposes. The participants were categorized into five groups: normozoospermia, asthenozoospermia, oligozoospermia, oligoasthenozoospermia, and azoospermia. Patients were randomly selected for further study; 41 patients with normozoospermia were included in the control group and 117 patients with non-normozoospermia were included in the study group according to the proportions of all enrolled patients. Cytokinesis-block micronucleus (CBMN) screening was conducted through peripheral blood. Statistical analysis was used to determine the differences in micronuclei (MNi) among the groups and the relationships between MNi and clinical data. There was a significant increase in MNi in infertile men, including those with azoospermia, compared with normozoospermic patients, but there was no significant difference between the genetic and nongenetic groups in azoospermic men. The presence of MNi was associated with sperm concentration, progressive sperm motility, immotile spermatozoa, malformed spermatozoa, total sperm count, and total sperm motility. This study underscores the potential utility of MNi as a diagnostic tool and highlights the need for further research to elucidate the underlying mechanisms of male infertility.
Humans
;
Male
;
Infertility, Male/genetics*
;
Adult
;
Micronucleus Tests
;
Semen Analysis
;
Oligospermia/genetics*
;
Azoospermia/genetics*
;
Chromosome Aberrations
;
Sperm Count
;
Micronuclei, Chromosome-Defective
;
Middle Aged
9.Value of targeted next-generation sequencing in pathogen detection for neonates with respiratory distress syndrome: a prospective randomized controlled trial.
Hai-Hong ZHANG ; Xia OU-YANG ; Xian-Ping LIU ; Shao-Ru HUANG ; Yun-Feng LIN
Chinese Journal of Contemporary Pediatrics 2025;27(10):1191-1198
OBJECTIVES:
To investigate the application value of targeted next-generation sequencing (tNGS) in the etiological diagnosis of moderate to severe respiratory distress syndrome (RDS) in neonates.
METHODS:
A prospective randomized controlled trial was conducted, enrolling 81 term and late-preterm neonates with moderate to severe RDS admitted to Fujian Children's Hospital between December 2023 and December 2024. Patients were randomly assigned to the conventional microbiological test (CMT) group (n=42) or the tNGS group (n=39). For routine pathogen detection, bronchoalveolar lavage fluid was obtained via bronchoscopy, and lower respiratory tract specimens were collected via the endotracheal tube; all specimens underwent culture, and some specimens additionally underwent polymerase chain reaction or antigen testing. In the tNGS group, tNGS was performed in addition to routine pathogen detection on the same specimen types. The detection rate of pathogens, the detection rate of co-infections, and the duration of antibiotic use were compared between the two groups.
RESULTS:
The pathogen detection rate in the tNGS group (18/39, 46%) was significantly higher than that in the CMT group (8/42, 19%) (P=0.009). The co-infection detection rate was 13% (5/39) in the tNGS group, while no co-infections were identified in the CMT group (P=0.024). Regarding treatment, the duration of antibiotic use in the tNGS group was shorter than that in the CMT group [(12±4) days vs (15±5) days, P=0.003].
CONCLUSIONS
tNGS significantly improves the pathogen detection rate in neonates with moderate to severe RDS and offers advantages in the rapid identification of co-infections and reduction of antibiotic treatment duration, suggesting it has clinical utility and potential for wider adoption.
Humans
;
Prospective Studies
;
Infant, Newborn
;
Female
;
Respiratory Distress Syndrome, Newborn/etiology*
;
Male
;
High-Throughput Nucleotide Sequencing/methods*
10.Effect of TBL1XR1 Mutation on Cell Biological Characteristics of Diffuse Large B-Cell Lymphoma.
Hong-Ming FAN ; Le-Min HONG ; Chun-Qun HUANG ; Jin-Feng LU ; Hong-Hui XU ; Jie CHEN ; Hong-Ming HUANG ; Xin-Feng WANG ; Dan GUO
Journal of Experimental Hematology 2025;33(2):423-430
OBJECTIVE:
To investigate the effect of TBL1XR1 mutation on cell biological characteristics of diffuse large B-cell lymphoma (DLBCL).
METHODS:
The TBL1XR1 overexpression vector was constructed and DNA sequencing was performed to determine the mutation status. The effect of TBL1XR1 mutation on apoptosis of DLBCL cell line was detected by flow cytometry and TUNEL fluorescence assay; CCK-8 assay was used to detect the effect of TBL1XR1 mutation on cell proliferation; Transwell assay was used to detect the effect of TBL1XR1 mutation on cell migration and invasion; Western blot was used to detect the effect of TBL1XR1 mutation on the expression level of epithelial-mesenchymal transition (EMT) related proteins.
RESULTS:
The TBL1XR1 overexpression plasmid was successfully constructed. The in vitro experimental results showed that TBL1XR1 mutation had no significant effect on apoptosis of DLBCL cells. Compared with the control group, TBL1XR1 mutation enhanced cell proliferation, migration and invasion of DLBCL cells. TBL1XR1 gene mutation significantly increased the expression of N-cadherin protein, while the expression of E-cadherin protein decreased.
CONCLUSION
TBL1XR1 mutation plays a role in promoting tumor cell proliferation, migration and invasion in DLBCL. TBL1XR1 could be considered as a potential target for DLBCL therapy in future research.
Humans
;
Lymphoma, Large B-Cell, Diffuse/pathology*
;
Cell Proliferation
;
Mutation
;
Receptors, Cytoplasmic and Nuclear/genetics*
;
Apoptosis
;
Cell Line, Tumor
;
Epithelial-Mesenchymal Transition
;
Cell Movement
;
Repressor Proteins/genetics*
;
Nuclear Proteins/genetics*
;
Cadherins/metabolism*

Result Analysis
Print
Save
E-mail