1.Prevalence of Schistosoma japonicum infections in wild rodents in key areas during the elimination phase
Chao LÜ ; Xiaojuan XU ; Jiajia LI ; Ting FENG ; Hai ZHU ; Yifeng LI ; Ling XU ; Zhihong FENG ; Huiwen JIANG ; Xiaoqing ZOU ; Wenjun WEI ; Zhiqiang QIN ; Yang HONG ; Shiqing ZHANG ; Jing XU
Chinese Journal of Schistosomiasis Control 2025;37(5):475-481
Objective To investigate the prevalence of Schistosoma japonicum infections in wild rodents in schistosomiasis-endemic areas of China, so as to provide insights into formulation of technical guidelines for monitoring of and the precise control strategy for S. japonicum infections in wild rodents during the elimination phase. Methods Two administrative villages where schistosomiasis was historically highly prevalent were selected each from Dongzhi County, Anhui Province, and Duchang County, Jiangxi Province as study villages. Wild rodents were captured from study villages with baited traps or cages at night in June and September, 2021. The number of rodents captured was recorded, and the rodent species was characterized based on morphologi-cal characteristics. Liver tissues were sampled from captured rodents for macroscopical observation of the presence of egg granu- lomas, and S. japonicum infection was detected simultaneously using liver tissue homogenate microscopy, examinations of mesenteric tissues for parasites, and modified Kato-Katz thick smear technique (Kato-Katz technique). A positive S. japonicum infection was defined as detection of S. japonicum eggs or adult worms by any of these methods. The rate of wild rodent capture and prevalence of S. japonicum infections in wild rodents were compared in different study villages and at different time periods, and the detection of S. japonicum infections in wild rodents was compared by different assays. Results The overall rate of wild ro- dent capture was 8.28% (237/2 861) in Dongzhi County, and the wild rodent capture rates were 9.24% (133/1 439) and 7.31% (104/1 422) in two study villages (χ2 = 3.503, P = 0.061), and were 8.59% (121/1 409) and 7.99% (116/1 452) in June and September, 2021, respectively (χ2 = 0.337, P = 0.561). The overall rate of wild rodent capture was 3.72% (77/2 072) in Duchang County, and the wild rodent capture rates were 6.91% (67/970) and 0.91% (10/1 102) in two study villages (χ2 = 51.901, P < 0.001), and were 4.13% (39/945) and 3.37% (38/1 127) in June and September, 2021, respectively (χ2 = 0.815, P = 0.365). Rattus norvegicus was the predominant rodent species captured in both counties, accounting for 70.04% (166/237) of all captured wild rodents in Dongzhi County and 88.31% (68/77) in Duchang County. No S. japonicum infection was detected in wild rodents captured in Duchang County. Nevertheless, the overall prevalence of S. japonicum infections was 51.05% (121/237) in wild rodents captured in Dongzhi County, with prevalence rates of 50.38% (67/133) and 51.92% (54/104) in two study villages (χ2 = 0.098, P = 0.755), and 54.31% (63/116) and 47.93% (58/121) in September and June, 2021, respectively (χ2 = 0.964, P = 0.326). Of 237 wild rodents captured in Dongzhi County, there were 140 (59.07%) rodents with visible hepatic egg granulomas, 117 (49.47%) tested positive for S. japonicum eggs by liver tissue homogenate microscopy, 34 (14.35%) tested positive for S. japonicum eggs with Kato-Katz technique; however, no adult S. japonicum worms were detected in mesenteric tissues. In addition, hepatic egg granulomas were found in all wild rodents tested positive for S. japonicum eggs with liver tissue homogenate microscopy. Conclusions The rate of wild rodent capture and prevalence of S. japonicum infection in wild rodents vary greatly in schistosomiasis-endemic areas of China, and the prevalence of S. japonicum infection is slightly higher in wild rodents captured in autumn than in summer. Liver tissue is recommended as the preferred sample for surveillance of S. japonicum infection in wild rodents, and a combination of macroscopical observation of hepatic egg granulomas and liver tissue homogenate microscopy may be a standard method for surveillance of S. japonicum infection in wild rodents.
2.Equivalence of SYN008 versus omalizumab in patients with refractory chronic spontaneous urticaria: A multicenter, randomized, double-blind, parallel-group, active-controlled phase III study.
Jingyi LI ; Yunsheng LIANG ; Wenli FENG ; Liehua DENG ; Hong FANG ; Chao JI ; Youkun LIN ; Furen ZHANG ; Rushan XIA ; Chunlei ZHANG ; Shuping GUO ; Mao LIN ; Yanling LI ; Shoumin ZHANG ; Xiaojing KANG ; Liuqing CHEN ; Zhiqiang SONG ; Xu YAO ; Chengxin LI ; Xiuping HAN ; Guoxiang GUO ; Qing GUO ; Xinsuo DUAN ; Jie LI ; Juan SU ; Shanshan LI ; Qing SUN ; Juan TAO ; Yangfeng DING ; Danqi DENG ; Fuqiu LI ; Haiyun SUO ; Shunquan WU ; Jingbo QIU ; Hongmei LUO ; Linfeng LI ; Ruoyu LI
Chinese Medical Journal 2025;138(16):2040-2042
3.Effects of understory environmental factors on understory planting of medicinal plants.
Ding-Mei WEN ; Hong-Biao ZHANG ; Feng-Yuan QIN ; Chao-Qun XU ; Dou-Dou LI ; Bao-Lin GUO
China Journal of Chinese Materia Medica 2025;50(5):1164-1171
Understory planting of medicinal plants is a new planting mode that connects Chinese herbal medicine(CHM) with forest resources.The complex and variable understory environmental factors will inevitably affect the yield and quality of understory CHM.This research summarized the research progress on understory planting of medicinal plants based on forest types and environmental factors within the forest from the perspectives of understory light, air temperature and humidity, soil characteristics, and the interaction between crops within the forest.The results showed that the complex and variable light, temperature and humidity, and soil factors(such as fertility, acidity and alkalinity, and microorganisms) under the forest could affect the yield and quality of medicinal plants to varying degrees through physiological activities such as photosynthesis and respiration, resulting in a significant increase or decrease in yield and quality compared to open field cultivation.In addition, the competition or mutual benefit between different crops within the forest could lead to differences in the yield and quality of understory medicinal plants compared to open field cultivation.A reasonable combination of planting could achieve resource sharing and complementary advantages.Therefore, conducting systematic research on the effects of understory environmental factors on the yield and content of medicinal plants with different growth and development characteristics can provide theoretical guidance and technical references for formulating comprehensive strategies for understory planting of medicinal plants, such as selecting suitable medicinal plant varieties, optimizing planting density, and conducting reasonable forest management, thus contributing to the sustainable development and ecological protection of CHM.
Plants, Medicinal/growth & development*
;
Forests
;
Soil/chemistry*
;
Environment
;
Ecosystem
;
Temperature
4.Effects of Saccharomyces cerevisiae chassis cells with different squalene content on triterpenoid synthesis.
Feng ZHANG ; Kang-Xin HOU ; Yue ZHANG ; Hong-Ping HOU ; Yue ZHANG ; Chao-Yue LIU ; Xue-Mi HAO ; Jia LIU ; Cai-Xia WANG
China Journal of Chinese Materia Medica 2025;50(8):2130-2136
Many triterpenoid compounds have been successfully heterologously synthesized in Saccharomyces cerevisiae. To increase the yield of triterpenoids, various metabolic engineering strategies have been developed. One commonly applied strategy is to enhance the supply of precursors, which has been widely used by researchers. Squalene, as a precursor to triterpenoid biosynthesis, plays a crucial role in the synthesis of these compounds. This study primarily investigates the effect of different squalene levels in chassis strains on the synthesis of triterpenoids(oleanolic acid and ursolic acid), and the underlying mechanisms are further explored using real-time quantitative PCR(qPCR) analysis. The results demonstrate that the chassis strain CB-9-5, which produces high levels of squalene, inhibits the synthesis of oleanolic acid and ursolic acid. In contrast, chassis strains with moderate to low squalene production, such as Y8-1 and CNPK, are more conducive to the synthesis of oleanolic acid and ursolic acid. The qPCR analysis reveals that the expression levels of ERG1, βAS, and CrCYP716A154 in the oleanolic acid-producing strain CB-OA are significantly lower than those in the control strains C-OA and Y-OA, suggesting that high squalene production in the chassis strains suppresses the transcription of certain genes, leading to a reduced yield of triterpenoids. Our findings indicate that when constructing S. cerevisiae strains for triterpenoid production, chassis strains with high squalene content may suppress the expression of certain genes, ultimately lowering their production, whereas chassis strains with moderate squalene levels are more favorable for triterpenoid biosynthesis.
Squalene/analysis*
;
Saccharomyces cerevisiae/genetics*
;
Triterpenes/metabolism*
;
Metabolic Engineering
;
Oleanolic Acid/biosynthesis*
;
Ursolic Acid
5.Mechanism of Tougu Xiaotong Capsules regulating Malat1 and mi R-16-5p ceRNA to alleviate "cholesterol-iron" metabolism disorder in osteoarthritis chondrocytes.
Chang-Long FU ; Yan-Ming LIN ; Shu-Jie LAN ; Chao LI ; Zi-Hong ZHANG ; Yue CHEN ; Ying-Rui TONG ; Yan-Feng HUANG
China Journal of Chinese Materia Medica 2025;50(15):4363-4371
From the perspective of competitive endogenous RNA(ceRNA) constructed by metastasy-associated lung adenocarcinoma transcript 1(Malat1) and microRNA 16-5p(miR-16-5p), the improvement mechanism of Tonggu Xiaotong Capsules(TGXTC) on the imbalance and disorder of "cholesterol-iron" metabolism in chondrocytes of osteoarthritis(OA) was explored. In vivo experiments, 60 8-week-old C57BL/6 mice were acclimatized and fed for 1 week and then randomly divided into two groups: blank group(12 mice) and modeling group(48 mice). The animals in modeling group were anesthetized by 5% isoflurane inhalation, which was followed by the construction of OA model. They were then randomly divided into model group, TGXTC group, Malat1 overexpression group, and TGXTC+Malat1 overexpression(TGXTC+Malat1-OE) group, with 12 mice in each group. The structural changes of mouse cartilage tissues were observed by Masson staining after the intervention in each group. RT-PCR was employed to detect the mRNA levels of Malat1 and miR-16-5p in cartilage tissues. Western blot was used to analyze the protein expression of ATP-binding cassette transporter A1(ABCA1), sterol regulatory element-binding protein(SREBP), cytochrome P450 family 7 subfamily B member 1(CYP7B1), CCAAT/enhancer-binding protein homologous protein(CHOP), acyl-CoA synthetase long-chain family member 4(ACSL4), and glutathione peroxidase 4(GPX4) in cartilage tissues. In vitro experiments, mouse chondrocytes were induced by thapsigargin(TG), and the combination of Malat1 and miR-16-5p was detected by double luciferase assay. The fluorescence intensity of Malat1 in chondrocytes was determined by fluorescence in situ hybridization. The miR-16-5p inhibitory chondrocyte model was constructed. RT-PCR was used to analyze the levels of Malat1 and miR-16-5p in chondrocytes under the inhibition of miR-16-5p. Western blot was adopted to analyze the regulation of TG-induced chondrocyte proteins ABCA1, SREBP, CYP7B1, CHOP, ACSL4, and GPX4 by TGXTC under the inhibition of miR-16-5p. The results of in vivo experiments showed that,(1) compared with model group, TGXTC group exhibited a relatively complete cartilage layer structure. Compared with Malat1-OE group, TGXTC+Malat1-OE group showed alleviated cartilage surface damage.(2) Compared with model group, TGXTC group had a significantly decreased Malat1 mRNA level and an increased miR-16-5p mRNA level in mouse cartilage tissues(P<0.01).(3) Compared with the model group, the protein levels of ABCA1 and GPX4 in the cartilage tissue of mice in the TGXTC group increased, while the protein levels of SREBP, CYP7B1, CHOP and ACSL4 decreased(P<0.01). The results of in vitro experiments show that,(1) dual-luciferase was used to evaluate that miR-16-5p has a targeting effect on the Malat1 gene.(2)Compared with TG+miR-16-5p inhibition group, TG+miR-16-5p inhibition+TGXTC group had an increased mRNA level of miR-16-5p and an decreased mRNA level of Malat1(P<0.01).(3) Compared with TG+miR-16-5p inhibition group, TG+miR-16-5p inhibition+TGXTC group exhibited increased expression of ABCA1 and GPX4 proteins and decreased expression of SREBP, CYP7B1, CHOP, and ACSL4 proteins(P<0.01). The reasults showed that TGXTC can regulate the ceRNA of Malat1 and miR-16-5p to alleviate the "cholesterol-iron" metabolism disorder of osteoarthritis chondrocytes.
Animals
;
MicroRNAs/metabolism*
;
RNA, Long Noncoding/metabolism*
;
Chondrocytes/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Mice, Inbred C57BL
;
Mice
;
Osteoarthritis/drug therapy*
;
Iron/metabolism*
;
Male
;
Cholesterol/metabolism*
;
Humans
;
Capsules
;
RNA, Competitive Endogenous
6.Multiple biomarkers risk score for accurately predicting the long-term prognosis of patients with acute coronary syndrome.
Zhi-Yong ZHANG ; Xin-Yu WANG ; Cong-Cong HOU ; Hong-Bin LIU ; Lyu LYU ; Mu-Lei CHEN ; Xiao-Rong XU ; Feng JIANG ; Long LI ; Wei-Ming LI ; Kui-Bao LI ; Juan WANG
Journal of Geriatric Cardiology 2025;22(7):656-667
BACKGROUND:
Biomarkers-based prediction of long-term risk of acute coronary syndrome (ACS) is scarce. We aim to develop a risk score integrating clinical routine information (C) and plasma biomarkers (B) for predicting long-term risk of ACS patients.
METHODS:
We included 2729 ACS patients from the OCEA (Observation of cardiovascular events in ACS patients). The earlier admitted 1910 patients were enrolled as development cohort; and the subsequently admitted 819 subjects were treated as validation cohort. We investigated 10-year risk of cardiovascular (CV) death, myocardial infarction (MI) and all cause death in these patients. Potential variables contributing to risk of clinical events were assessed using Cox regression models and a score was derived using main part of these variables.
RESULTS:
During 16,110 person-years of follow-up, there were 238 CV death/MI in the development cohort. The 7 most important predictors including in the final model were NT-proBNP, D-dimer, GDF-15, peripheral artery disease (PAD), Fibrinogen, ST-segment elevated MI (STEMI), left ventricular ejection fraction (LVEF), termed as CB-ACS score. C-index of the score for predication of cardiovascular events was 0.79 (95% CI: 0.76-0.82) in development cohort and 0.77 (95% CI: 0.76-0.78) in the validation cohort (5832 person-years of follow-up), which outperformed GRACE 2.0 and ABC-ACS risk score. The CB-ACS score was also well calibrated in development and validation cohort (Greenwood-Nam-D'Agostino: P = 0.70 and P = 0.07, respectively).
CONCLUSIONS
CB-ACS risk score provides a useful tool for long-term prediction of CV events in patients with ACS. This model outperforms GRACE 2.0 and ABC-ACS ischemic risk score.
7.Qingda Granule Attenuates Hypertension-Induced Cardiac Damage via Regulating Renin-Angiotensin System Pathway.
Lin-Zi LONG ; Ling TAN ; Feng-Qin XU ; Wen-Wen YANG ; Hong-Zheng LI ; Jian-Gang LIU ; Ke WANG ; Zhi-Ru ZHAO ; Yue-Qi WANG ; Chao-Ju WANG ; Yi-Chao WEN ; Ming-Yan HUANG ; Hua QU ; Chang-Geng FU ; Ke-Ji CHEN
Chinese journal of integrative medicine 2025;31(5):402-411
OBJECTIVE:
To assess the efficacy of Qingda Granule (QDG) in ameliorating hypertension-induced cardiac damage and investigate the underlying mechanisms involved.
METHODS:
Twenty spontaneously hypertensive rats (SHRs) were used to develope a hypertension-induced cardiac damage model. Another 10 Wistar Kyoto (WKY) rats were used as normotension group. Rats were administrated intragastrically QDG [0.9 g/(kg•d)] or an equivalent volume of pure water for 8 weeks. Blood pressure, histopathological changes, cardiac function, levels of oxidative stress and inflammatory response markers were measured. Furthermore, to gain insights into the potential mechanisms underlying the protective effects of QDG against hypertension-induced cardiac injury, a network pharmacology study was conducted. Predicted results were validated by Western blot, radioimmunoassay immunohistochemistry and quantitative polymerase chain reaction, respectively.
RESULTS:
The administration of QDG resulted in a significant decrease in blood pressure levels in SHRs (P<0.01). Histological examinations, including hematoxylin-eosin staining and Masson trichrome staining revealed that QDG effectively attenuated hypertension-induced cardiac damage. Furthermore, echocardiography demonstrated that QDG improved hypertension-associated cardiac dysfunction. Enzyme-linked immunosorbent assay and colorimetric method indicated that QDG significantly reduced oxidative stress and inflammatory response levels in both myocardial tissue and serum (P<0.01).
CONCLUSIONS
Both network pharmacology and experimental investigations confirmed that QDG exerted its beneficial effects in decreasing hypertension-induced cardiac damage by regulating the angiotensin converting enzyme (ACE)/angiotensin II (Ang II)/Ang II receptor type 1 axis and ACE/Ang II/Ang II receptor type 2 axis.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Hypertension/pathology*
;
Renin-Angiotensin System/drug effects*
;
Rats, Inbred SHR
;
Oxidative Stress/drug effects*
;
Male
;
Rats, Inbred WKY
;
Blood Pressure/drug effects*
;
Myocardium/pathology*
;
Rats
;
Inflammation/pathology*
8.Autophagy in Oligodendrocyte Lineage Cells Controls Oligodendrocyte Numbers and Myelin Integrity in an Age-dependent Manner.
Hong CHEN ; Gang YANG ; De-En XU ; Yu-Tong DU ; Chao ZHU ; Hua HU ; Li LUO ; Lei FENG ; Wenhui HUANG ; Yan-Yun SUN ; Quan-Hong MA
Neuroscience Bulletin 2025;41(3):374-390
Oligodendrocyte lineage cells, including oligodendrocyte precursor cells (OPCs) and oligodendrocytes (OLs), are essential in establishing and maintaining brain circuits. Autophagy is a conserved process that keeps the quality of organelles and proteostasis. The role of autophagy in oligodendrocyte lineage cells remains unclear. The present study shows that autophagy is required to maintain the number of OPCs/OLs and myelin integrity during brain aging. Inactivation of autophagy in oligodendrocyte lineage cells increases the number of OPCs/OLs in the developing brain while exaggerating the loss of OPCs/OLs with brain aging. Inactivation of autophagy in oligodendrocyte lineage cells impairs the turnover of myelin basic protein (MBP). It causes MBP to accumulate in the cytoplasm as multimeric aggregates and fails to be incorporated into integral myelin, which is associated with attenuated endocytic recycling. Inactivation of autophagy in oligodendrocyte lineage cells impairs myelin integrity and causes demyelination. Thus, this study shows autophagy is required to maintain myelin quality during aging by controlling the turnover of myelin components.
Animals
;
Autophagy/physiology*
;
Oligodendroglia/metabolism*
;
Myelin Sheath/physiology*
;
Aging/pathology*
;
Myelin Basic Protein/metabolism*
;
Cell Lineage/physiology*
;
Mice
;
Oligodendrocyte Precursor Cells
;
Mice, Inbred C57BL
;
Brain/cytology*
;
Cells, Cultured
;
Cell Count
9.Correction to: Autophagy in Oligodendrocyte Lineage Cells Controls Oligodendrocyte Numbers and Myelin Integrity in an Age-dependent Manner.
Hong CHEN ; Gang YANG ; De-En XU ; Yu-Tong DU ; Chao ZHU ; Hua HU ; Li LUO ; Lei FENG ; Wenhui HUANG ; Yan-Yun SUN ; Quan-Hong MA
Neuroscience Bulletin 2025;41(3):547-548
10.Clinical practice guidelines for the diagnosis and treatment of atopic dermatitis with integrative traditional Chinese and Western medicine.
Xin-Ran DU ; Meng-Yi WU ; Mao-Can TAO ; Ying LIN ; Chao-Ying GU ; Min-Feng WU ; Yi CAO ; Da-Can CHEN ; Wei LI ; Hong-Wei WANG ; Ying WANG ; Yi WANG ; Han-Zhi LU ; Xin LIU ; Xiang-Fei SU ; Fu-Lun LI
Journal of Integrative Medicine 2025;23(6):641-653
Traditional Chinese medicine (TCM) is a well-accepted therapy for atopic dermatitis (AD). However, there are currently no evidence-based guidelines integrating TCM and Western medicine for the treatment of AD, limiting the clinical application of such combined approaches. Therefore, the China Association of Chinese Medicine initiated the development of the current guideline, focusing on key issues related to the use of TCM in the treatment of AD. This guideline was developed in accordance with the principles of the guideline formulation manual published by the World Health Organization. A comprehensive review of the literature on the combined use of TCM and Western medicine to treat AD was conducted. The findings were extensively discussed by experts in dermatology and pharmacy with expertise in both TCM and Western medicine. This guideline comprises 23 recommendations across seven major areas, including TCM syndrome differentiation and classification of AD, principles and application scenarios of TCM combined with Western medicine for treating AD, outcome indicators for evaluating clinical efficacy of AD treatment, integration of TCM pattern classification and Western medicine across disease stages, daily management of AD, the use of internal TCM therapies and proprietary Chinese medicines, and TCM external treatments. Please cite this article as: Du XR, Wu MY, Tao MC, Lin Y, Gu CY, Wu MF, Cao Y, Chen DC, Li W, Wang HW, Wang Y, Wang Y, Lu HZ, Liu X, Su XF, Li FL. Clinical practice guidelines for the diagnosis and treatment of atopic dermatitis with integrative traditional Chinese and Western medicine. J Integr Med. 2025; 23(6):641-653.
Dermatitis, Atopic/drug therapy*
;
Humans
;
Medicine, Chinese Traditional/methods*
;
Integrative Medicine
;
Drugs, Chinese Herbal/therapeutic use*
;
Practice Guidelines as Topic

Result Analysis
Print
Save
E-mail