1.Progress in the study of anti-inflammatory active components with anti-inflammatory effects and mechanisms in Caragana Fabr.
Yu-mei MA ; Ju-yuan LUO ; Tao CHEN ; Hong-mei LI ; Cheng SHEN ; Shuo WANG ; Zhi-bo SONG ; Yu-lin LI
Acta Pharmaceutica Sinica 2025;60(1):58-71
The plants of the genus
2.Disulfiram alleviates cardiac hypertrophic injury by inhibiting TAK1-mediated PANoptosis.
Wei-Dong LI ; Xuan-Yang SHEN ; Xiao-Lu JIANG ; Hong-Fu WEN ; Yuan SHEN ; Mei-Qi ZHANG ; Wen-Tao TAN
Acta Physiologica Sinica 2025;77(2):222-230
The study aims to examine the effects and potential mechanisms of disulfiram (DSF) on cardiac hypertrophic injury, focusing on the role of transforming growth factor-β-activated kinase 1 (TAK1)-mediated pan-apoptosis (PANoptosis). H9C2 cardiomyocytes were treated with angiotensin II (Ang II, 1 µmol/L) to establish an in vitro model of myocardial hypertrophy. DSF (40 µmol/L) was used to treat cardiomyocyte hypertrophic injury models, either along or in combination with the TAK1 inhibitor, 5z-7-oxozeaenol (5z-7, 0.1 µmol/L). We assessed cell damage using propidium iodide (PI) staining, measured cell viability with CCK8 assay, quantified inflammatory factor levels in cell culture media via ELISA, detected TAK1 and RIPK1 binding rates using immunoprecipitation, and analyzed the protein expression levels of key proteins in the TAK1-mediated PANoptosis pathway using Western blot. In addition, the surface area of cardiomyocytes was measured with Phalloidin staining. The results showed that Ang II significantly reduced the cellular viability of H9C2 cardiomyocytes and the binding rate of TAK1 and RIPK1, significantly increased the surface area of H9C2 cardiomyocytes, PI staining positive rate, levels of inflammatory factors [interleukin-1β (IL-1β), IL-18, and tumor necrosis factor α (TNF-α)] in cell culture media and p-TAK1/TAK1 ratio, and significantly up-regulated key proteins in the PANoptosis pathway [pyroptosis-related proteins NLRP3, Caspase-1 (p20), and GSDMD-N (p30), apoptosis-related proteins Caspase-3 (p17), Caspase-7 (p20), and Caspase-8 (p18), as well as necroptosis-related proteins p-MLKL, RIPK1, and RIPK3]. DSF significantly reversed the above changes induced by Ang II. Both 5z-7 and exogenous IL-1β weakened these cardioprotective effects of DSF. These results suggest that DSF may alleviate cardiac hypertrophic injury by inhibiting TAK1-mediated PANoptosis.
Animals
;
MAP Kinase Kinase Kinases/physiology*
;
Rats
;
Myocytes, Cardiac/pathology*
;
Disulfiram/pharmacology*
;
Cardiomegaly
;
Apoptosis/drug effects*
;
Cell Line
;
Angiotensin II
;
Necroptosis/drug effects*
;
Interleukin-1beta/metabolism*
;
Receptor-Interacting Protein Serine-Threonine Kinases/metabolism*
;
Lactones
;
Resorcinols
;
Zearalenone/administration & dosage*
3.Research progress of the interaction between RAAS and clock genes in cardiovascular diseases.
Rui-Ling MA ; Yi-Yuan WANG ; Yu-Shun KOU ; Lu-Fan SHEN ; Hong WANG ; Ling-Na ZHANG ; Jiao TIAN ; Lin YI
Acta Physiologica Sinica 2025;77(4):669-677
The renin-angiotensin-aldosterone system (RAAS) is crucial for regulating blood pressure and maintaining fluid balance, while clock genes are essential for sustaining biological rhythms and regulating metabolism. There exists a complex interplay between RAAS and clock genes that may significantly contribute to the development of various cardiovascular and metabolic diseases. Although current literature has identified correlations between these two systems, the specific mechanisms of their interaction remain unclear. Moreover, the interaction patterns under different physiological and pathological conditions need further investigation. This review summarizes the synergistic roles of the RAAS and clock genes in cardiovascular diseases, explores their molecular mechanisms and pathophysiological connections, discusses the application of chronotherapy, and highlights potential future research directions, aiming to provide novel insights for the prevention and treatment of related diseases.
Humans
;
Renin-Angiotensin System/genetics*
;
Cardiovascular Diseases/genetics*
;
CLOCK Proteins/physiology*
;
Animals
4.Angelicae Dahuricae Radix polysaccharides treat ulcerative colitis in mice by regulating gut microbiota and metabolism.
Feng XU ; Lei ZHU ; Ya-Nan LI ; Cheng CHENG ; Yuan CUI ; Yi-Heng TONG ; Jing-Yi HU ; Hong SHEN
China Journal of Chinese Materia Medica 2025;50(4):896-907
This study employed 16S r RNA gene high-throughput sequencing and metabolomics to explore the mechanism of Angelicae Dahuricae Radix polysaccharides(RP) in the treatment of ulcerative colitis(UC). A mouse model of UC was induced with 2. 5% dextran sulfate sodium. The therapeutic effects of RP on UC in mice were evaluated based on changes in body weight, disease activity index( DAI), and colon length, as well as pathological changes. RT-qPCR was performed to assess the m RNA levels of interleukin(IL)-6, IL-1β, tumor necrosis factor(TNF)-α, myeloperoxidase(MPO), mucin 2(Muc2), Occludin, Claudin2, and ZO-1 in the mouse colon tissue. ELISA was employed to measure the expression of IL-1β and TNF-α in the colon tissue. The intestinal permeability of mice was evaluated by the fluorescent dye permeability assay. Immunohistochemistry was employed to detect the expression of Muc2 and occludin in the colon tissue. Changes in gut microbiota and metabolites were analyzed by 16S r RNA sequencing and ultra-high-performance liquid chromatography coupled with quadrupole-orbitrap mass spectrometry( UPLC-Q-Exactive Plus Orbitrap MS), respectively. The results indicated that low-dose RP alleviated general symptoms, reduced colonic inflammation and intestinal permeability, and promoted Muc2 secretion and tight junction protein expression in UC mice. In addition, low-dose RP increased gut microbiota diversity in UC mice and decreased the relative abundance of harmful bacteria such as Ochrobactrum and Streptococcus. Twenty-seven differential metabolites were identified in feces, and low-dose RP restored the levels of disturbed metabolites. Notably, arginine and proline metabolism were the most significantly altered amino acid metabolic pathways following lowdose RP intervention. In conclusion, RP can ameliorate general symptoms, inhibit colonic inflammation, and maintain intestinal mucosal barrier integrity in UC mice by modulating gut microbiota composition and arginine and proline metabolism.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Colitis, Ulcerative/genetics*
;
Mice
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Polysaccharides/administration & dosage*
;
Angelica/chemistry*
;
Humans
;
Colon/metabolism*
;
Disease Models, Animal
;
Mucin-2/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
5.Bear Bile Powder Ameliorates LPS-Induced Acute Lung Injury by Inhibiting CD14 Pathway and Improving Intestinal Flora: Exploration of "Fei (Lung)-Dachang (Large Intestine) Interaction" Theory.
Long CHENG ; Hui-Ling TIAN ; Hong-Yuan LEI ; Ying-Zhou WANG ; Ma-Jing JIAO ; Yun-Hui LIANG ; Zhi-Zheng WU ; Xu-Kun DENG ; Yong-Shen REN
Chinese journal of integrative medicine 2025;31(9):821-829
OBJECTIVE:
To explore the effect of bear bile powder (BBP) on acute lung injury (ALI) and the underlying mechanism.
METHODS:
The chemical constituents of BBP were analyzed by ultra-high-pressure liquid chromatography-mass spectrometry (UPLC-MS). After 7 days of adaptive feeding, 50 mice were randomly divided into 5 groups by a random number table (n=10): normal control (NC), lipopolysaccharide (LPS), dexamethasone (Dex), low-, and high-dose BBP groups. The dosing cycle was 9 days. On the 12th and 14th days, 20 µL of Staphylococcus aureus solution (bacterial concentration of 1 × 10-7 CFU/mL) was given by nasal drip after 1 h of intragastric administration, and the mice in the NC group was given the same dose of phosphated buffered saline (PBS) solution. On the 16th day, after 1 h intragastric administration, 100 µL of LPS solution (1 mg/mL) was given by tracheal intubation, and the same dose of PBS solution was given to the NC group. Lung tissue was obtained to measure the myeloperoxidase (MPO) activity, the lung wet/dry weight ratio and expressions of CD14 and other related proteins. The lower lobe of the right lung was obtained for pathological examination. The concentrations of inflammatory cytokines including interleukin (IL)-6, tumour necrosis factor α (TNF-α ) and IL-1β in the bronchoalveolar lavage fluid (BALF) were detected by enzyme linked immunosorbent assay, and the number of neutrophils was counted. The colonic contents of the mice were analyzed by 16 sRNA technique and the contents of short-chain fatty acids (SCFAs) were measured by gas chromatograph-mass spectrometer (GC-MS).
RESULTS:
UPLC-MS revealed that the chemical components of BBP samples were mainly tauroursodeoxycholic acid and taurochenodeoxycholic acid sodium salt. BBP reduced the activity of MPO, concentrations of inflammatory cytokines, and inhibited the expression of CD14 protein, thus suppressing the activation of NF-κB pathway (P<0.05). The lung histopathological results indicated that BBP significantly reduced the degree of neutrophil infiltration, cell shedding, necrosis, and alveolar cavity depression. Moreover, BBP effectively regulated the composition of the intestinal microflora and increased the production of SCFAs, which contributed to its treatment effect (P<0.05).
CONCLUSIONS
BBP alleviates lung injury in ALI mouse through inhibiting activation of NF-κB pathway and decreasing expression of CD14 protein. BBP may promote recovery of ALI by improving the structure of intestinal flora and enhancing metabolic function of intestinal flora.
Animals
;
Acute Lung Injury/pathology*
;
Lipopolysaccharides
;
Ursidae
;
Gastrointestinal Microbiome/drug effects*
;
Bile/chemistry*
;
Lipopolysaccharide Receptors/metabolism*
;
Powders
;
Male
;
Lung/drug effects*
;
Mice
;
Peroxidase/metabolism*
;
Signal Transduction/drug effects*
;
Cytokines/metabolism*
6.Nanoengineered cargo with targeted in vivo Foxo3 gene editing modulated mitophagy of chondrocytes to alleviate osteoarthritis.
Manyu CHEN ; Yuan LIU ; Quanying LIU ; Siyan DENG ; Yuhan LIU ; Jiehao CHEN ; Yaojia ZHOU ; Xiaolin CUI ; Jie LIANG ; Xingdong ZHANG ; Yujiang FAN ; Qiguang WANG ; Bin SHEN
Acta Pharmaceutica Sinica B 2025;15(1):571-591
Mitochondrial dysfunction in chondrocytes is a key pathogenic factor in osteoarthritis (OA), but directly modulating mitochondria in vivo remains a significant challenge. This study is the first to verify a correlation between mitochondrial dysfunction and the downregulation of the FOXO3 gene in the cartilage of OA patients, highlighting the potential for regulating mitophagy via FOXO3 gene modulation to alleviate OA. Consequently, we developed a chondrocyte-targeting CRISPR/Cas9-based FOXO3 gene-editing tool (FoxO3) and integrated it within a nanoengineered 'truck' (NETT, FoxO3-NETT). This was further encapsulated in injectable hydrogel microspheres (FoxO3-NETT@SMs) to harness the antioxidant properties of sodium alginate and the enhanced lubrication of hybrid exosomes. Collectively, these FoxO3-NETT@SMs successfully activate mitophagy and rebalance mitochondrial function in OA chondrocytes through the Foxo3 gene-modulated PINK1/Parkin pathway. As a result, FoxO3-NETT@SMs stimulate chondrocytes proliferation, migration, and ECM production in vitro, and effectively alleviate OA progression in vivo, demonstrating significant potential for clinical applications.
7.Expert consensus on the prevention and treatment of radiochemotherapy-induced oral mucositis.
Juan XIA ; Xiaoan TAO ; Qinchao HU ; Wei LUO ; Xiuzhen TONG ; Gang ZHOU ; Hongmei ZHOU ; Hong HUA ; Guoyao TANG ; Tong WU ; Qianming CHEN ; Yuan FAN ; Xiaobing GUAN ; Hongwei LIU ; Chaosu HU ; Yongmei ZHOU ; Xuemin SHEN ; Lan WU ; Xin ZENG ; Qing LIU ; Renchuan TAO ; Yuan HE ; Yang CAI ; Wenmei WANG ; Ying ZHANG ; Yingfang WU ; Minhai NIE ; Xin JIN ; Xiufeng WEI ; Yongzhan NIE ; Changqing YUAN ; Bin CHENG
International Journal of Oral Science 2025;17(1):54-54
Radiochemotherapy-induced oral mucositis (OM) is a common oral complication in patients with tumors following head and neck radiotherapy or chemotherapy. Erosion and ulcers are the main features of OM that seriously affect the quality of life of patients and even the progress of tumor treatment. To date, differences in clinical prevention and treatment plans for OM have been noted among doctors of various specialties, which has increased the uncertainty of treatment effects. On the basis of current research evidence, this expert consensus outlines risk factors, clinical manifestations, clinical grading, ancillary examinations, diagnostic basis, prevention and treatment strategies and efficacy indicators for OM. In addition to strategies such as basic oral care, anti-inflammatory and analgesic agents, anti-infective agents, pro-healing agents, and photobiotherapy recommended in previous guidelines, we also emphasize the role of traditional Chinese medicine in OM prevention and treatment. This expert consensus aims to provide references and guidance for dental physicians and oncologists in formulating strategies for OM prevention, diagnosis, and treatment, standardizing clinical practice, reducing OM occurrence, promoting healing, and improving the quality of life of patients.
Humans
;
Chemoradiotherapy/adverse effects*
;
Consensus
;
Risk Factors
;
Stomatitis/etiology*
8.Association between Fish Consumption and Stroke Incidence Across Different Predicted Risk Populations: A Prospective Cohort Study from China.
Hong Yue HU ; Fang Chao LIU ; Ke Yong HUANG ; Chong SHEN ; Jian LIAO ; Jian Xin LI ; Chen Xi YUAN ; Ying LI ; Xue Li YANG ; Ji Chun CHEN ; Jie CAO ; Shu Feng CHEN ; Dong Sheng HU ; Jian Feng HUANG ; Xiang Feng LU ; Dong Feng GU
Biomedical and Environmental Sciences 2025;38(1):15-26
OBJECTIVE:
The relationship between fish consumption and stroke is inconsistent, and it is uncertain whether this association varies across predicted stroke risks.
METHODS:
A cohort study comprising 95,800 participants from the Prediction for Atherosclerotic Cardiovascular Disease Risk in China project was conducted. A standardized questionnaire was used to collect data on fish consumption. Participants were stratified into low- and moderate-to-high-risk categories based on their 10-year stroke risk prediction scores. Hazard ratios ( HRs) and 95% confidence intervals ( CIs) were estimated using Cox proportional hazard models and additive interaction by relative excess risk due to interaction (RERI), attributable proportion (AP), and synergy index (SI).
RESULTS:
During 703,869 person-years of follow-up, 2,773 incident stroke events were identified. Higher fish consumption was associated with a lower risk of stroke, particularly among moderate-to-high-risk individuals ( HR = 0.53, 95% CI: 0.47-0.60) than among low-risk individuals ( HR = 0.64, 95% CI: 0.49-0.85). A significant additive interaction between fish consumption and predicted stroke risk was observed (RERI = 4.08, 95% CI: 2.80-5.36; SI = 1.64, 95% CI: 1.42-1.89; AP = 0.36, 95% CI: 0.28-0.43).
CONCLUSION
Higher fish consumption was associated with a lower risk of stroke, and this beneficial association was more pronounced in individuals with moderate-to-high stroke risk.
Humans
;
China/epidemiology*
;
Male
;
Female
;
Stroke/etiology*
;
Middle Aged
;
Prospective Studies
;
Incidence
;
Aged
;
Animals
;
Fishes
;
Risk Factors
;
Diet
;
Seafood
;
Adult
;
Cohort Studies
9.Association of Body Mass Index with All-Cause Mortality and Cause-Specific Mortality in Rural China: 10-Year Follow-up of a Population-Based Multicenter Prospective Study.
Juan Juan HUANG ; Yuan Zhi DI ; Ling Yu SHEN ; Jian Guo LIANG ; Jiang DU ; Xue Fang CAO ; Wei Tao DUAN ; Ai Wei HE ; Jun LIANG ; Li Mei ZHU ; Zi Sen LIU ; Fang LIU ; Shu Min YANG ; Zu Hui XU ; Cheng CHEN ; Bin ZHANG ; Jiao Xia YAN ; Yan Chun LIANG ; Rong LIU ; Tao ZHU ; Hong Zhi LI ; Fei SHEN ; Bo Xuan FENG ; Yi Jun HE ; Zi Han LI ; Ya Qi ZHAO ; Tong Lei GUO ; Li Qiong BAI ; Wei LU ; Qi JIN ; Lei GAO ; He Nan XIN
Biomedical and Environmental Sciences 2025;38(10):1179-1193
OBJECTIVE:
This study aimed to explore the association between body mass index (BMI) and mortality based on the 10-year population-based multicenter prospective study.
METHODS:
A general population-based multicenter prospective study was conducted at four sites in rural China between 2013 and 2023. Multivariate Cox proportional hazards models and restricted cubic spline analyses were used to assess the association between BMI and mortality. Stratified analyses were performed based on the individual characteristics of the participants.
RESULTS:
Overall, 19,107 participants with a sum of 163,095 person-years were included and 1,910 participants died. The underweight (< 18.5 kg/m 2) presented an increase in all-cause mortality (adjusted hazards ratio [ aHR] = 2.00, 95% confidence interval [ CI]: 1.66-2.41), while overweight (≥ 24.0 to < 28.0 kg/m 2) and obesity (≥ 28.0 kg/m 2) presented a decrease with an aHR of 0.61 (95% CI: 0.52-0.73) and 0.51 (95% CI: 0.37-0.70), respectively. Overweight ( aHR = 0.76, 95% CI: 0.67-0.86) and mild obesity ( aHR = 0.72, 95% CI: 0.59-0.87) had a positive impact on mortality in people older than 60 years. All-cause mortality decreased rapidly until reaching a BMI of 25.7 kg/m 2 ( aHR = 0.95, 95% CI: 0.92-0.98) and increased slightly above that value, indicating a U-shaped association. The beneficial impact of being overweight on mortality was robust in most subgroups and sensitivity analyses.
CONCLUSION
This study provides additional evidence that overweight and mild obesity may be inversely related to the risk of death in individuals older than 60 years. Therefore, it is essential to consider age differences when formulating health and weight management strategies.
Humans
;
Body Mass Index
;
China/epidemiology*
;
Male
;
Female
;
Middle Aged
;
Prospective Studies
;
Rural Population/statistics & numerical data*
;
Aged
;
Follow-Up Studies
;
Adult
;
Mortality
;
Cause of Death
;
Obesity/mortality*
;
Overweight/mortality*
10.Multi-modal cross-scale imaging technologies and their applications in plant network analysis.
Yining XIE ; Yuchen KOU ; Yanhui YUAN ; Jinbo SHEN ; Xiaohong ZHUANG ; Jinxing LIN ; Xi ZHANG
Chinese Journal of Biotechnology 2025;41(7):2559-2578
A complete plant body consists of elements on different scales, including microscopic molecules, mesoscopic multicellular structures, and macroscopic tissues and organs, which are interconnected to form complex biological networks. The growth and development of plants involve the regulation of elements on different scales and their biological networks, which requires the coordinated operation of multiple molecules, cells, tissues, and organs. It is difficult to reveal the essence of multi-level life activities by a single method or technology. In recent years, the development of various novel imaging technologies has provided new approaches for revealing the complex life activities in plants. Using multi-modal imaging technologies to study the cross-scale network connections of plants from the microscopic, mesoscopic, and macroscopic levels is crucial for understanding the complex internal connections behind biological functions. This paper first summarizes multi-modal cross-scale imaging technologies, three-dimensional reconstruction, and image processing methods, outlines the basic framework of cross-scale network connection properties, and then summarizes the applications of multi-modal imaging technologies in elucidating plant multi-scale networks. Finally, this review systematically integrates the combined analysis of cross-scale 3D spatial structural data and single-cell omics, laying a theoretical foundation for the innovation of novel plant imaging technologies. Furthermore, it provides a new research paradigm for in-depth exploration of the interaction mechanisms among cross-scale elements and the principles of biological network connectivity in plant life activities.
Plants/metabolism*
;
Imaging, Three-Dimensional/methods*
;
Image Processing, Computer-Assisted/methods*
;
Multimodal Imaging/methods*
;
Plant Physiological Phenomena

Result Analysis
Print
Save
E-mail