1.Diagnostic value of exhaled volatile organic compounds in pulmonary cystic fibrosis: A systematic review
Xiaoping YU ; Zhixia SU ; Kai YAN ; Taining SHA ; Yuhang HE ; Yanyan ZHANG ; Yujian TAO ; Hong GUO ; Guangyu LU ; Weijuan GONG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):223-229
Objective To explore the diagnostic value of exhaled volatile organic compounds (VOCs) for cystic fibrosis (CF). Methods A systematic search was conducted in PubMed, EMbase, Web of Science, Cochrane Library, CNKI, Wanfang, VIP, and SinoMed databases up to August 7, 2024. Studies that met the inclusion criteria were selected for data extraction and quality assessment. The quality of included studies was assessed by the Newcastle-Ottawa Scale (NOS), and the risk of bias and applicability of included prediction model studies were assessed by the prediction model risk of bias assessment tool (PROBAST). Results A total of 10 studies were included, among which 5 studies only identified specific exhaled VOCs in CF patients, and another 5 developed 7 CF risk prediction models based on the identification of VOCs in CF. The included studies reported a total of 75 exhaled VOCs, most of which belonged to the categories of acylcarnitines, aldehydes, acids, and esters. Most models (n=6, 85.7%) only included exhaled VOCs as predictive factors, and only one model included factors other than VOCs, including forced expiratory flow at 75% of forced vital capacity (FEF75) and modified Medical Research Council scale for the assessment of dyspnea (mMRC). The accuracy of the models ranged from 77% to 100%, and the area under the receiver operating characteristic curve ranged from 0.771 to 0.988. None of the included studies provided information on the calibration of the models. The results of the Prediction Model Risk of Bias Assessment Tool (PROBAST) showed that the overall bias risk of all predictive model studies was high, and the overall applicability was unclear. Conclusion The exhaled VOCs reported in the included studies showed significant heterogeneity, and more research is needed to explore specific compounds for CF. In addition, risk prediction models based on exhaled VOCs have certain value in the diagnosis of CF, but the overall bias risk is relatively high and needs further optimization from aspects such as model construction and validation.
2.The Mechanisms of Quercetin in Improving Alzheimer’s Disease
Yu-Meng ZHANG ; Yu-Shan TIAN ; Jie LI ; Wen-Jun MU ; Chang-Feng YIN ; Huan CHEN ; Hong-Wei HOU
Progress in Biochemistry and Biophysics 2025;52(2):334-347
Alzheimer’s disease (AD) is a prevalent neurodegenerative condition characterized by progressive cognitive decline and memory loss. As the incidence of AD continues to rise annually, researchers have shown keen interest in the active components found in natural plants and their neuroprotective effects against AD. Quercetin, a flavonol widely present in fruits and vegetables, has multiple biological effects including anticancer, anti-inflammatory, and antioxidant. Oxidative stress plays a central role in the pathogenesis of AD, and the antioxidant properties of quercetin are essential for its neuroprotective function. Quercetin can modulate multiple signaling pathways related to AD, such as Nrf2-ARE, JNK, p38 MAPK, PON2, PI3K/Akt, and PKC, all of which are closely related to oxidative stress. Furthermore, quercetin is capable of inhibiting the aggregation of β‑amyloid protein (Aβ) and the phosphorylation of tau protein, as well as the activity of β‑secretase 1 and acetylcholinesterase, thus slowing down the progression of the disease.The review also provides insights into the pharmacokinetic properties of quercetin, including its absorption, metabolism, and excretion, as well as its bioavailability challenges and clinical applications. To improve the bioavailability and enhance the targeting of quercetin, the potential of quercetin nanomedicine delivery systems in the treatment of AD is also discussed. In summary, the multifaceted mechanisms of quercetin against AD provide a new perspective for drug development. However, translating these findings into clinical practice requires overcoming current limitations and ongoing research. In this way, its therapeutic potential in the treatment of AD can be fully utilized.
3.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
4.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects.
5.Alternative Polyadenylation in Mammalian
Yu ZHANG ; Hong-Xia CHI ; Wu-Ri-Tu YANG ; Yong-Chun ZUO ; Yong-Qiang XING
Progress in Biochemistry and Biophysics 2025;52(1):32-49
With the rapid development of sequencing technologies, the detection of alternative polyadenylation (APA) in mammals has become more precise. APA precisely regulates gene expression by altering the length and position of the poly(A) tail, and is involved in various biological processes such as disease occurrence and embryonic development. The research on APA in mammals mainly focuses on the following aspects:(1) identifying APA based on transcriptome data and elucidating their characteristics; (2) investigating the relationship between APA and gene expression regulation to reveal its important role in life regulation;(3) exploring the intrinsic connections between APA and disease occurrence, embryonic development, differentiation, and other life processes to provide new perspectives and methods for disease diagnosis and treatment, as well as uncovering embryonic development regulatory mechanisms. In this review, the classification, mechanisms and functions of APA were elaborated in detail and the methods for APA identifying and APA data resources based on various transcriptome data were systematically summarized. Moreover, we epitomized and provided an outlook on research on APA, emphasizing the role of sequencing technologies in driving studies on APA in mammals. In the future, with the further development of sequencing technology, the regulatory mechanisms of APA in mammals will become clearer.
6.Acute Inflammatory Pain Induces Sex-different Brain Alpha Activity in Anesthetized Rats Through Optically Pumped Magnetometer Magnetoencephalography
Meng-Meng MIAO ; Yu-Xuan REN ; Wen-Wei WU ; Yu ZHANG ; Chen PAN ; Xiang-Hong LIN ; Hui-Dan LIN ; Xiao-Wei CHEN
Progress in Biochemistry and Biophysics 2025;52(1):244-257
ObjectiveMagnetoencephalography (MEG), a non-invasive neuroimaging technique, meticulously captures the magnetic fields emanating from brain electrical activity. Compared with MEG based on superconducting quantum interference devices (SQUID), MEG based on optically pump magnetometer (OPM) has the advantages of higher sensitivity, better spatial resolution and lower cost. However, most of the current studies are clinical studies, and there is a lack of animal studies on MEG based on OPM technology. Pain, a multifaceted sensory and emotional phenomenon, induces intricate alterations in brain activity, exhibiting notable sex differences. Despite clinical revelations of pain-related neuronal activity through MEG, specific properties remain elusive, and comprehensive laboratory studies on pain-associated brain activity alterations are lacking. The aim of this study was to investigate the effects of inflammatory pain (induced by Complete Freund’s Adjuvant (CFA)) on brain activity in a rat model using the MEG technique, to analysis changes in brain activity during pain perception, and to explore sex differences in pain-related MEG signaling. MethodsThis study utilized adult male and female Sprague-Dawley rats. Inflammatory pain was induced via intraplantar injection of CFA (100 μl, 50% in saline) in the left hind paw, with control groups receiving saline. Pain behavior was assessed using von Frey filaments at baseline and 1 h post-injection. For MEG recording, anesthetized rats had an OPM positioned on their head within a magnetic shield, undergoing two 15-minute sessions: a 5-minute baseline followed by a 10-minute mechanical stimulation phase. Data analysis included artifact removal and time-frequency analysis of spontaneous brain activity using accumulated spectrograms, generating spectrograms focused on the 4-30 Hz frequency range. ResultsMEG recordings in anesthetized rats during resting states and hind paw mechanical stimulation were compared, before and after saline/CFA injections. Mechanical stimulation elevated alpha activity in both male and female rats pre- and post-saline/CFA injections. Saline/CFA injections augmented average power in both sexes compared to pre-injection states. Remarkably, female rats exhibited higher average spectral power 1 h after CFA injection than after saline injection during resting states. Furthermore, despite comparable pain thresholds measured by classical pain behavioral tests post-CFA treatment, female rats displayed higher average power than males in the resting state after CFA injection. ConclusionThese results imply an enhanced perception of inflammatory pain in female rats compared to their male counterparts. Our study exhibits sex differences in alpha activities following CFA injection, highlighting heightened brain alpha activity in female rats during acute inflammatory pain in the resting state. Our study provides a method for OPM-based MEG recordings to be used to study brain activity in anaesthetized animals. In addition, the findings of this study contribute to a deeper understanding of pain-related neural activity and pain sex differences.
7.Four Weeks of HIIT Modulates Lactate-mediated Synaptic Plasticity to Improve Depressive-like Behavior in CUMS Rats
Yu-Mei HAN ; Zi-Wei ZHANG ; Jia-Ren LIANG ; Chun-Hui BAO ; Jun-Sheng TIAN ; Shi ZHOU ; Huan XIANG ; Yong-Hong YANG
Progress in Biochemistry and Biophysics 2025;52(6):1499-1510
ObjectiveThis study aimed to investigate the effects of 4-week high-intensity interval training (HIIT) on synaptic plasticity in the prefrontal cortex (PFC) of rats exposed to chronic unpredictable mild stress (CUMS), and to explore its potential mechanisms. MethodsA total of 48 male Sprague-Dawley rats were randomly divided into 4 groups: control (C), model (M), control plus HIIT (HC), and model plus HIIT (HM). Rats in groups M and HM underwent 8 weeks of CUMS to establish depression-like behaviors, while groups HC and HM received HIIT intervention beginning from the 5th week for 4 consecutive weeks. The HIIT protocol consisted of repeated intervals of 3 min at high speed (85%-90% maximal training speed, Smax) alternated with one minute at low speed (50%-55% Smax), with 3 to 5 sets per session, conducted 5 d per week. Behavioral assessments and tail-vein blood lactate levels were measured at the end of the 4th and 8th weeks. After the intervention, rat PFC tissues were collected for Golgi staining to analyze synaptic morphology. Enzyme-linked immunosorbent assays (ELISA) were employed to detect brain-derived neurotrophic factor (BDNF), monocarboxylate transporter 1 (MCT1), lactate, and glutamate levels in the PFC, as well as serotonin (5-HT) levels in serum. Additionally, Western blot analysis was conducted to quantify the expression of synaptic plasticity-related proteins, including c-Fos, activity-regulated cytoskeleton-associated protein (Arc), and N-methyl-D-aspartate receptor 1 (NMDAR1). ResultsCompared to the control group (C), the CUMS-exposed rats (group M) exhibited significant reductions in sucrose preference rates, number of grid crossings, frequency of upright postures, and entries into and duration spent in open arms of the elevated plus maze, indicating marked depressive-like behaviors. Additionally, the group M showed significantly reduced dendritic spine density in the PFC, along with elevated levels of c-Fos, Arc, NMDAR1 protein expression, and increased concentrations of lactate and glutamate. Conversely, BDNF and MCT1 contents in the PFC and 5-HT levels in serum were significantly decreased. Following HIIT intervention, rats in the group HM displayed considerable improvement in behavioral indicators compared with the group M, accompanied by significant elevations in PFC MCT1 and lactate concentrations. Furthermore, HIIT notably normalized the expression levels of c-Fos, Arc, NMDAR1, as well as glutamate and BDNF contents in the PFC. Synaptic spine density also exhibited significant recovery. ConclusionFour weeks of HIIT intervention may alleviate depressive-like behaviors in CUMS rats by increasing lactate levels and reducing glutamate concentration in the PFC, thereby downregulating the overexpression of NMDAR, attenuating excitotoxicity, and enhancing synaptic plasticity.
8.Effects of Huoxue Xiaoyi Formula (活血消异方) on Tfh Cells and the JAK/STAT Pathway in Ectopic Tissues of Ovarian Endometriosis Model Rats
Weisen FAN ; Yongjia ZHANG ; Yaqian WANG ; Hong LEI ; Huiting YAN ; Ruijie HOU ; Xin WANG ; Yu TAO ; Ruihua ZHAO
Journal of Traditional Chinese Medicine 2025;66(14):1473-1480
ObjectiveTo explore the potential mechanism of Huoxue Xiaoyi Formula (活血消异方, HXF) in treating ovarian endometriosis (OEM) from the perspective of T follicular helper (Tfh) cells and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway. MethodsForty-five female SD rats with normal estrous cycles were randomly divided into three groups, HXF group, model group, and normal group, with 15 rats in each group. A rat model of OEM was established by autologous endometrial tissue implantation. After successful modeling, the treatment group received HXF at 5.85 g/(kg·d) by gavage for 14 consecutive days. The model group and normal group received 1 mL/d of normal saline by gavage. RNA-sequencing data from human proliferative-phase endometriotic and normal endometrial tissues were downloaded from the GEO database. Transcriptomic sequencing was used to analyze gene expression in rat ovarian ectopic tissues and normal uterine tissues, and comparisons were made with human data to verify JAK/STAT pathway activation in proliferative-phase ectopic tissues. Immunohistochemistry was used to detect the positive expression of CXC chemokine receptor 5 (CXCR5) and interleukin-21 (IL-21) in rat ovarian ectopic and normal uterine tissues. Western Blotting was performed to detect the protein levels of IL-21, IL-21 receptor (IL-21R), Janus kinase 1 (JAK1), signal transducer and activator of transcription 6 (STAT6), and B-cell lymphoma 2 (Bcl-2). Tfh cell infiltration was analyzed using immune cell infiltration methods. ResultsGene set enrichment analysis showed that the JAK/STAT pathway was significantly activated in human proliferative-phase endometriotic tissues compared to normal endometrial tissues. Similarly, the JAK/STAT pathway was markedly activated in rat ovarian ectopic tissues in the model group compared to the normal group, but suppressed in the HXF group compared to the model group. Compared with normal uterine tissues, ovarian ectopic tissues in the model group showed increased Tfh cell infiltration scores, higher CXCR5 and IL-21 expression, and elevated levels of IL-21, IL-21R, JAK1, STAT6, and Bcl-2 proteins. Compared with the model group, HXF group showed reduced CXCR5 and IL-21 expression and decreased protein levels of IL-21, IL-21R, JAK1, STAT6, and Bcl-2. ConclusionHXF may suppress activation of the JAK/STAT signaling pathway in ovarian endometriotic tissues by inhibiting IL-21 secretion from Tfh cells.
9.Prediction of suitable habitats of Phlebotomus chinensis in Gansu Province based on the Biomod2 ensemble model
Dawei YU ; Yandong HOU ; Aiwei HE ; Yu FENG ; Guobing YANG ; Chengming YANG ; Hong LIANG ; Hailiang ZHANG ; Fan LI
Chinese Journal of Schistosomiasis Control 2025;37(3):276-283
Objective To investigate the suitable habitats of Phlebotomus chinensis in Gansu Province, so as provide insights into effective management of mountain-type zoonotic visceral leishmaniasis (MT-ZVL). Methods The geographical coordinates of locations where MT-ZVL cases were reported were retrieved in Gansu Province from 2015 to 2023, and data pertaining to 26 environmental variables were captured, including 19 climatic variables (annual mean temperature, mean diurnal range, isothermality, temperature seasonality, maximum temperature of the warmest month, minimum temperature of the coldest month, temperature annual range, mean temperature of the wettest quarter, mean temperature of the driest quarter, mean temperature of the warmest quarter, mean temperature of the coldest quarter, annual precipitation, precipitation of the wettest month, precipitation of the driest month, precipitation seasonality, precipitation of the wettest quarter, precipitation of the driest quarter, precipitation of the warmest quarter, and precipitation of the coldest quarter), five geographical variables (elevation, annual normalized difference vegetation index, vegetation type, landform type and land use type), and two population and economic variables (population distribution and gross domestic product). Twelve species distribution models were built using the biomod2 package in R project, including surface range envelope (SRE) model, generalized linear model (GLM), generalized additive model (GAM), multivariate adaptive regression splines (MARS) model, generalized boosted model (GBM), classification tree analysis (CTA) model, flexible discriminant analysis (FDA) model, maximum entropy (MaxEnt) model, optimized maximum entropy (MAXNET) model, artificial neural network (ANN) model, random forest (RF) model, and extreme gradient boosting (XGBOOST) model. The performance of 12 models was evaluated using the area under the receiver operating characteristic curve (AUC), true skill statistics (TSS), and Kappa coefficient, and single models with high performance was selected to build the optimal ensemble models. Factors affecting the survival of Ph. chinensis were identified based on climatic, geographical, population and economic variables. In addition, the suitable distribution areas of Ph. chinensis were predicted in Gansu Province under shared socioeconomic pathway 126 (SSP126), SSP370 and SSP585 scenarios based on climatic data during the period from 1991 to 2020, from 2041 to 2060 (2050s), and from 2081 to 2100 (2090s) . Results A total of 11 species distribution models were successfully built for prediction of potential distribution areas of Ph. chinensis in Gansu Province, and the RF model had the highest predictive accuracy (AUC = 0.998). The ensemble model built based on the RF model, XGBOOST model, GLM, and MARS model had an increased predictive accuracy (AUC = 0.999) relative to single models. Among the 26 environmental factors, precipitation of the wettest quarter (12.00%), maximum temperature of the warmest month (11.58%), and annual normalized difference vegetation index (11.29%) had the greatest contributions to suitable habitats distribution of Ph. sinensis. Under the climatic conditions from 1991 to 2020, the potential suitable habitat area for Ph. chinensis in Gansu Province was approximately 5.80 × 104 km2, of which the highly suitable area was 1.42 × 104 km2, and primarily concentrated in the southernmost region of Gansu Province. By the 2050s, the unsuitable and lowly suitable areas for Ph. chinensis in Gansu Province had decreased by varying degrees compared to that of 1991 to 2020 period, while the moderately and highly suitable areas exhibited expansion and migration. By the 2090s, under the SSP126 scenario, the suitable habitat area for Ph. chinensis increased significantly, and under the SSP585 scenario, the highly suitable areas transformed into extremely suitable areas, also showing substantial growth. Future global warming is conducive to the survival and reproduction of Ph. chinensis. From the 2050s to the 2090s, the highly suitable areas for Ph. chinensis in Gansu Province will be projected to expand northward. Under the SSP126 scenario, the suitable habitat area for Ph. chinensis in Gansu Province is expected to increase by 194.75% and 204.79% in the 2050s and 2090s, respectively, compared to that of the 1991 to 2020 period. Under the SSP370 scenario, the moderately and highly suitable areas will be projected to increase by 164.40% and 209.03% in the 2050s and 2090s, respectively, while under the SSP585 scenario, they are expected to increase by 195.98% and 211.66%, respectively. Conclusions The distribution of potential suitable habitats of Ph. sinensis gradually shifts with climatic changes. Intensified surveillance and management of Ph. sinensis is recommended in central and eastern parts of Gansu Province to support early warning of MT-ZVL.
10.Predicting model for the impact of Internet usage characteristics on suicidal ideation among vocational high school students
YU Bin, YAN Jingyan, ZHANG Liqun, XIAO Chenchang, LI Fang, GUO Yan, YAN Hong
Chinese Journal of School Health 2025;46(8):1175-1179
Objective:
To explore the association between the Internet usage characteristics and suicidal ideation among vocational high school students, so as to provide a theoretical basis for precise intervention of suicide among vocational high school students.
Methods:
A total of 1 781 students were recruited from three vocational high schools in Wuhan and Xianning in March 2023 by using the cluster random sampling method. The Columbia-Suicide Severity Rating Scale and Revised Chen Internet Addiction Scale were used to measure suicidal ideation and Internet addiction, respectively. LASSO regression model was used to select influential factors related to suicidal ideation, and the gradient boosting decision tree algorithm XGBoost was used to develop prediction models and evaluate predictive performance. By calculating the SHAP values, the contribution of each influential factor was quantified.
Results:
The prevalence of suicidal ideation among vocational high school students was 42.22% and prevalence of Internet addiction was 26.39%. LASSO regression results indicated that age, gender, experience of being left behind, parental relationship, holding a class cadre position, using the Internet for learning, Internet use during dawn, morning and late night, Internet addiction, and depressive symptoms were all the influential factors of suicidal ideation among vocational high school students ( β= -0.05 , 0.29, 0.09, 0.27, 0.10, -0.01, 0.09, 0.05, 0.24, 0.28, 0.78, all P <0.05). The AUC of the prediction model was 0.75. The results based on SHAP values indicated that all influential factors identified through multivariate analysis contributed positively to the model predictions ( SHAP >0). Among these, depressive symptoms and parental relationship had the greatest impact on suicidal ideation ( SHAP =0.77, 0.26), and the joint effect of features with higher contribution could improve the prediction probability.
Conclusions
Depressive symptoms, parental relationships, Internet addiction, and time of Internet use are most important risk factors of suicidal behaviors for vocational high school students. Thus, effective interventions should be conducted to reduce their suicidal ideation.


Result Analysis
Print
Save
E-mail