1.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
2.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
3.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
4.Chinese Medicine for Treatment of COVID-19: A Review of Potential Pharmacological Components and Mechanisms.
Qian-Qian XU ; Dong-Dong YU ; Xiao-Dan FAN ; He-Rong CUI ; Qian-Qian DAI ; Xiao-Ying ZHONG ; Xin-Yi ZHANG ; Chen ZHAO ; Liang-Zhen YOU ; Hong-Cai SHANG
Chinese journal of integrative medicine 2025;31(1):83-95
Coronavirus disease 2019 (COVID-19) is an acute infectious respiratory disease that has been prevalent since December 2019. Chinese medicine (CM) has demonstrated its unique advantages in the fight against COVID-19 in the areas of disease prevention, improvement of clinical symptoms, and control of disease progression. This review summarized the relevant material components of CM in the treatment of COVID-19 by searching the relevant literature and reports on CM in the treatment of COVID-19 and combining with the physiological and pathological characteristics of the novel coronavirus. On the basis of sorting out experimental methods in vivo and in vitro, the mechanism of herb action was further clarified in terms of inhibiting virus invasion and replication and improving related complications. The aim of the article is to explore the strengths and characteristics of CM in the treatment of COVID-19, and to provide a basis for the research and scientific, standardized treatment of COVID-19 with CM.
Humans
;
Drugs, Chinese Herbal/pharmacology*
;
COVID-19 Drug Treatment
;
SARS-CoV-2/drug effects*
;
COVID-19/therapy*
;
Medicine, Chinese Traditional/methods*
;
Antiviral Agents/pharmacology*
;
Animals
5.Biosensor analysis technology and its research progress in drug development of Alzheimer's disease
Shu-qi SHEN ; Jia-hao FANG ; Hui WANG ; Liang CHAO ; Piao-xue YOU ; Zhan-ying HONG
Acta Pharmaceutica Sinica 2024;59(3):554-564
Biosensor analysis technology is a kind of technology with high specificity that can convert biological reactions into optical and electrical signals. In the development of drugs for Alzheimer's disease (AD), according to different disease hypotheses and targets, this technology plays an important role in confirming targets and screening active compounds. This paper briefly describes the pathogenesis of AD and the current situation of therapeutic drugs, introduces three biosensor analysis techniques commonly used in the discovery of AD drugs, such as surface plasmon resonance (SPR), biolayer interferometry (BLI) and fluorescence analysis technology, explains its basic principle and application progress, and summarizes their advantages and limitations respectively.
6.Full-field Anterior Chamber Angle Measurement Based on Optical Reflection Tomography
Bi-Wang LIU ; Jun-Ping ZHONG ; Hai-Na LIN ; Ya-Guang ZENG ; You-Ping YU ; Hong-Yi LI ; Ding-An HAN ; Jin-Ying CHEN
Progress in Biochemistry and Biophysics 2024;51(9):2240-2248
ObjectiveAngle-closure glaucoma (ACG) is one of the major eye-blinding diseases. To diagnose ACG, it is crucial to examine the anterior chamber angle. Current diagnostic tools include slit lamp gonioscopy, water gonioscopy, ultrasound biomicroscopy (UBM), and anterior segment optical coherence tomography (AS-OCT). Slit lamp and water gonioscopy allow convenient observation of the anterior chamber angle, but pose risks of invasive operation and eye infections. UBM can accurately measure the structure of the anterior chamber angle. However, it is complex to operate and unsuitable for patients, who have undergone trauma or ocular surgery. Although AS-OCT provides detailed images, it is costly. The aim of this study is to explore a non-invasive, non-destructive optical reflection tomography (ORT) technique. This technique can achieve low-cost three-dimensional imaging and full-field anterior chamber angle measurement of the porcine eye. MethodsThe experiment involved assembling an optical reflection tomography system, which included a complementary metal oxide semiconductor (CMOS) camera, a telecentric system, a stepper motor, and a white light source, achieving a spatial resolution of approximately 8.5 μm. The process required positioning the porcine eye at the center of the field of the imaging system and rotating it around its central axis using a stepper motor. Reflection projection images were captured at each angle with an exposure time of 1.0 ms and an interval of 2°. The collected reflection-projection data were processed using a filtered reflection tomography algorithm, generating a series of two-dimensional slice data. These slices essentially represented cross-sectional views of the three-dimensional structural image, and were reconstructed into a complete three-dimensional structural image. Based on the reconstructed three-dimensional structural image of the porcine eye, the anterior chamber angles at different positions were measured, and a distribution map of these angles was drawn. Simultaneously, the ORT measurements were compared with the standard results obtained from optical coherence tomography (OCT) to assess the accuracy of ORT measurements. ResultsIn this study, we successfully obtained the reflection projection data of a porcine eye using ORT technology, reconstructed its three-dimensional structural image, and measured the anterior chamber angle, generating the corresponding distribution map. To better distinguish the different structural parts of porcine eye, the three-dimensional structural image was marked with blue, green, and yellow dashed lines from the outer to the inner layers. The area between the blue and green dashed lines corresponded to the sclera. The area between the green and yellow dashed lines corresponded to the iris. The area inside the yellow dashed line corresponded to the pupil. The three-dimensional structural image clearly revealed the key anatomical features of the porcine eye. It was able to measure the anterior chamber angle at different positions. Additionally, the anterior chamber angle measurements of the porcine eye using ORT were compared with the measurements obtained using a TEL320C1 type OCT system, showing an average deviation of 0.51° and a mean square error
7.Advances in the construction of models and applications of Alzheimer's disease based on microfluidic chips
Piao-xue YOU ; Lan CHEN ; Shu-qi SHEN ; Liang CHAO ; Hui WANG ; Zhan-ying HONG
Acta Pharmaceutica Sinica 2024;59(6):1569-1581
Alzheimer's disease (AD) is a progressive neurodegenerative disease associated with dysfunctions related to thinking, learning, and memory of the brain. AD has multiple pathological characteristics with complicated causes, constructing a suitable pathological model is crucial for the research of AD. Microfluidic chip technology integrates multiple functional units on a chip, which can realize microenvironmental control similar to the physiological environment. It is well applied in the construction of pathological model, early diagnosis as well as drug screening of AD. This paper focuses on the construction of AD microfluidic chips model from the perspective of cell type, culture formats and the chips structure as well as the research progress of microfluidic chips in AD application based on the pathological characteristics of AD, which will provide a reference for further elucidation of AD mechanism and drug development.
8.Effect of Recombinant Human Thrombopoietin on Platelet Reconstitution after Autologous Peripheral Blood Stem Cell Transplantation in Patients with Multiple Myeloma
Yan XIE ; Ling-Zhi YAN ; Tao YOU ; Xiao-Lan SHI ; Shuang YAN ; Ying-Ying ZHAI ; Jing-Jing SHANG ; Zhi YAN ; Hong-Ying YOU ; Qing-Qing WANG ; De-Pei WU ; Cheng-Cheng FU
Journal of Experimental Hematology 2024;32(2):505-511
Objective:To analyze the effect of recombinant human thrombopoietin(rhTPO)on platelet(PLT)reconstitution after autologous peripheral blood stem cell transplantation(APBSCT)in patients with multiple myeloma(MM).Methods:The clinical data of 147 MM patients who were diagnosed in the First Affiliated Hospital of Soochow University and received APBSCT as the first-line therapy were retrospectively analyzed.According to whether rhTPO was used during APBSCT,the patients were divided into rhTPO group(80 cases)and control group(67 cases).The time of PLT engraftment,blood product infusion requirements,the proportion of patients with PLT recovery to ≥ 50 × 109/L and ≥ 100 × 109/L at+14 days and+100 days after transplantation,and adverse reactions including the incidence of bleeding were compared between the two groups.Results:There were no significant differences between the two groups in sex,age,M protein type,PLT count at the initial diagnosis,median duration of induction therapy before APBSCT,and number of CD34+cells reinfused(all P>0.05).The median time of PLT engraftment in the rhTPO group was 10(6-14)days,which was shorter than 11(8-23)days in the control group(P<0.001).The median PLT transfusion requirement in the rhTPO group during APBSCT was 15(0-50)U,which was less than 20(0-80)U in the control group(P=0.001).At+14 days after transplantation,the proportions of patients with PLT 2 50 × 109/L in the rhTPO group and the control group were 66.3%and 52.2%,while the proportions of patients with PLT ≥ 100 × 109/L were 23.8%and 11.9%,respectively,with no significant differences(all P>0.05).At+100 days after transplantation,the proportion of patients with PLT ≥ 50 × 109/L in rhTPO group and control group was 96.3%and 89.6%,respectively(P>0.05),but the proportion of patients with PLT ≥ 100 × 109/L in rhTPO group was higher than that in control group(75.0%vs 55.2%,P=0.012).There was no difference in the overall incidence of bleeding events in different locations during period of low PLT level of patients between the two groups.In rhTPO group,the rhTPO administration was well tolerated,and the incidences of abnormal liver and kidney function and infection were similar to those in the control group.Conclusion:When MM patients undergo first-line APBSCT,subcutaneous injection of rhTPO can shorten the time of platelet engraftment,reduce the transfusion volume of blood products,and be well tolerated,moreover,more patients have achieve a high level of PLT recovery after transplantation,which is very important for ensuring the safety of APBSCT and maintenance therapy.
9.Effect of safflower yellow on SCOP-induced cognitive impairment in mice based on BDNF/TrkB/CREB pathway
Yan-Qiang QI ; Hong-Xia YE ; Yan-You WANG ; Xia LI ; Ying-Xi HE ; Hui TIAN ; Le LI ; Yan-Li HU
Chinese Pharmacological Bulletin 2024;40(10):1858-1865
Aim To investigate the effect of safflower yellow on the learning and memory of scopolamine hydrobromide-induced memory impairment model mice.Methods 6-month-old C57BL/6J mice were randomly divided into the control group,model group,SY high-dose group,SY medium-dose group,SY low-dose group,and Huperzine-A group(12 mice in each group).SCOP was used to establish a memory impair-ment model,the spatial learning,memory and cognitive ability of mice with memory impairment were evaluated by behavioral experiments,the function of the choliner-gic nervous system in the cortex of mice was measured by ELISA kit,the pathological changes of brain tissue were observed by Nissl staining,and the expression of synaptic plasticity and BDNF/TrkB/CREB pathway re-lated proteins in the cortical and hippocampus of mice in each group was detected by Western blot.Results Compared with the model group,the learning and mem-ory ability of the mice in each administration group was improved.The neurons in the hippocampus and corti-cal were neatly arranged,the cell morphology tended to be complete,and the number of normal neurons in-creased.The function of the cortical cholinergic nerv-ous system was significantly improved,the expression of synaptic plasticity-related proteins in brain tissue was increased,and the BDNF/TrkB/CREB signaling path-way was activated.Conclusions SY can significantly improve the learning and memory ability of mice with SCOP-induced memory impairment,and its mechanism may play a neuroprotective role by improving choliner-gic nervous system function,activating BDNF/TrkB/CREB signaling pathway,regulating synaptic plasticity,and reduces neuronal damage.
10.Research progress on the immune effects of photodynamic therapy
Wen-Xin CHOU ; Tian-Zhen SUN ; Ying GU ; Hong-You ZHAO
Medical Journal of Chinese People's Liberation Army 2024;49(6):718-725
As a novel tumor treatment,photodynamic therapy(PDT)has been widely used in clinical treatment of a variety of tumors due to its advantages,such as fewer adverse reactions,precise targeting and repeatability of treatment.Unlike conventional treatments,such as surgery,chemotherapy and radiotherapy,PDT not only eliminates the primary tumor but also effectively inhibits metastatic tumors by activating the body's immune response.However,the PDT-activated immune response is influenced by multiple factors,including the localization and dose of photosensitizer in the cells,light parameters,oxygen concentration in the tumor,and the integrity of immune function.This review summarizes the mechanisms behind the PDT-activated anti-tumor immune response,systematically examines the key influencing factors on the immune effect of PDT,and discusses the future development direction of PDT in cancer treatment.

Result Analysis
Print
Save
E-mail