1.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
2.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
5.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
6.Mechanisms of the Masquelet technique to promote bone defect repair and its influencing factors.
Jiang-Hong WU ; Quan-Wei BAO ; Shao-Kang WANG ; Pan-Yu ZHOU ; Shuo-Gui XU
Chinese Journal of Traumatology 2025;28(3):157-163
The Masquelet technique, also known as the induced membrane technique, is a surgical technique for repairing large bone defects based on the use of a membrane generated by a foreign body reaction for bone grafting. This technique is not only simple to perform, with few complications and quick recovery, but also has excellent clinical results. To better understand the mechanisms by which this technique promotes bone defect repair and the factors that require special attention in practice, we examined and summarized the relevant research advances in this technique by searching, reading, and analysing the literature. Literature show that the Masquelet technique may promote the repair of bone defects through the physical septum and molecular barrier, vascular network, enrichment of mesenchymal stem cells, and high expression of bone-related growth factors, and the repair process is affected by the properties of spacers, the timing of bone graft, mechanical environment, intramembrane filling materials, artificial membrane, and pharmaceutical/biological agents/physical stimulation.
Humans
;
Bone Transplantation/methods*
;
Membranes, Artificial
;
Bone Regeneration
;
Animals
7.Thiotepa-containing conditioning for allogeneic hematopoietic stem cell transplantation in children with inborn errors of immunity: a retrospective clinical analysis.
Xiao-Jun WU ; Xia-Wei HAN ; Kai-Mei WANG ; Shao-Fen LIN ; Li-Ping QUE ; Xin-Yu LI ; Dian-Dian LIU ; Jian-Pei FANG ; Ke HUANG ; Hong-Gui XU
Chinese Journal of Contemporary Pediatrics 2025;27(10):1240-1246
OBJECTIVES:
To evaluate the safety and efficacy of thiotepa (TT)-containing conditioning regimens for allogeneic hematopoietic stem cell transplantation (HSCT) in children with inborn errors of immunity (IEI).
METHODS:
Clinical data of 22 children with IEI who underwent HSCT were retrospectively reviewed. Survival after HSCT was estimated using the Kaplan-Meier method.
RESULTS:
Nine patients received a traditional conditioning regimen (fludarabine + busulfan + cyclophosphamide/etoposide) and underwent peripheral blood stem cell transplantation (PBSCT). Thirteen patients received a TT-containing modified conditioning regimen (TT + fludarabine + busulfan + cyclophosphamide), including seven PBSCT and six umbilical cord blood transplantation (UCBT) cases. Successful engraftment with complete donor chimerism was achieved in all patients. Acute graft-versus-host disease occurred in 12 patients (one with grade III and the remaining with grade I-II). Chronic graft-versus-host disease occurred in one patient. The incidence of EB viremia in UCBT patients was lower than that in PBSCT patients (P<0.05). Over a median follow-up of 36.0 months, one death occurred. The 3-year overall survival (OS) rate was 100% for the modified regimen and 88.9% ± 10.5% for the traditional regimen (P=0.229). When comparing transplantation types, the 3-year OS rates were 100% for UCBT and 93.8% ± 6.1% for PBSCT (P>0.05), and the 3-year event-free survival rates were 100% and 87.1% ± 8.6%, respectively (P>0.05).
CONCLUSIONS
TT-containing conditioning for allogeneic HSCT in children with IEI is safe and effective. Both UCBT and PBSCT may achieve high success rates.
Humans
;
Retrospective Studies
;
Transplantation Conditioning/methods*
;
Thiotepa/therapeutic use*
;
Hematopoietic Stem Cell Transplantation/adverse effects*
;
Male
;
Female
;
Child, Preschool
;
Infant
;
Child
;
Transplantation, Homologous
;
Graft vs Host Disease
;
Adolescent
8.Efficacy and Survival Analysis of Chidamide Combined with DICE Regimen in Patients with Relapsed/Refractory Diffuse Large B-Cell Lymphoma.
Li-Li WU ; Li SHI ; Wei-Jing LI ; Wei LIU ; Yun FENG ; Shao-Ning YIN ; Cui-Ying HE ; Li-Hong LIU
Journal of Experimental Hematology 2025;33(2):373-378
OBJECTIVE:
To investigate the efficacy and safety of chidamide combined with DICE regimen (cisplatin+ ifosfamide + etoposide + dexamethasone) for relapsed/refractory diffuse large B-cell lymphome(R/R DLBCL).
METHODS:
The clinical data of 31 R/R DLBCL patients treated by chidamide combined with DICE regimen in the Hematology Department of the Fourth Hospital of Hebei Medical University from October 2016 to October 2020 were retrospectively analyzed. The clinical efficacy and adverse events were observed.
RESULTS:
Among the 31 patients, 20 were male and 11 were female. The median age of the patients was 55 (range: 27-71) years old, 21 cases were < 60 years old, 10 cases were ≥60 years old. 26 cases were refractory and 5 cases were relapsed. There were 13 cases of germinal center B-cell like (GCB), 17 cases of non-GCB, and 1 case had missing Hans type. There were 17 cases of double-expression lymphoma (DEL) and 14 cases of non-DEL. The complete response rate of patients was 38.7%(12/31), the overall response rate was 67.7%(21/31). The median progression-free survival time and the median overall survival time were 9.8(95%CI : 4.048-15.552) months, 13.9(95%CI : 9.294-18.506) months, respectively. Multipvariate analysis showed that GCB and DEL reduced the risk of disease recurrence in R/R DLBCL patients. The main grade 3/4 hematological adverse events in this study were thrombocytopenia, agranulocytosis, anemia and leukopenia.
CONCLUSION
The chidamide combined with DICE regimen is effective in the treatment of R/R DLBCL, and hematological adverse events should be closely monitored.
Humans
;
Lymphoma, Large B-Cell, Diffuse/drug therapy*
;
Middle Aged
;
Female
;
Male
;
Adult
;
Aged
;
Retrospective Studies
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
;
Benzamides/administration & dosage*
;
Aminopyridines/administration & dosage*
;
Etoposide/therapeutic use*
;
Cisplatin/administration & dosage*
;
Ifosfamide/administration & dosage*
;
Dexamethasone/therapeutic use*
9.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.

Result Analysis
Print
Save
E-mail