1.Investigation of an outbreak of group A human G9P [8] rotavirus infectious diarrhea among adults in Chongqing
Yang WANG ; Yuan KONG ; Ning CHEN ; Lundi YANG ; Jiang LONG ; Qin LI ; Xiaoyang XU ; Wei ZHENG ; Hong WEI ; Jie LU ; Quanjie XIAO ; Yingying BA ; Wenxi WU ; Qian XU ; Ju YAN
Shanghai Journal of Preventive Medicine 2025;37(8):663-668
ObjectiveTo investigate and analyze an outbreak of rotavirus infectious diarrhea in a prison in Chongqing Municipality, to provide a basis for adult rotavirus surveillance and prevention, and to explore the public health problems in special settings. MethodsA retrospective survey was conducted to collect and analyze data on individual cases with diarrheal disease on-site. The clinical characteristics, as well as the temporal, spatial and geographical distribution patterns of the epidemic were described. Multi-pathogen detection tests were conducted both on diarrhea cases and environmental samples, with viral genotyping performed on positive samples. A case-control analysis was performed to identify the causes of the outbreak, and an SEIR model was adopted to predict the outbreak trend and evaluate the effectiveness of interventions. ResultsA total of 65 cases were found among the inmates, with an attack rate of 2.03%. The predominant clinical manifestations included diarrhea (89.23%), watery stool (73.85%), and dehydration (18.46%). The epidemic curve indicated a “human-to-human” transmission pattern, with an average incubation period of 5‒6 days. The attack rates among chefs in the main canteen (80.00%, 8/10) and caterers (28.33%, 17/60) were significantly higher than those of other inmates (P<0.05). Multi-pathogen polymerase chain reaction (PCR) testing detected positive for group A rotavirus, with the viral genotyping identified as G9P [8] strain. Factors such as unprotected "bare-handed" food distribution among cases with diarrhea (OR=9.512, 95%CI: 4.261‒21.234) and close contact with diarrhea cases (OR=3.656, 95%CI: 1.719‒7.778) were the possible cause of the outbreak. The SEIR model (r0=5, α=0.3, β1=0.08, β2=0.04) was constructed using prison inmates as susceptible population, aiming at fitting the initial transmission trend of the outbreak, and the epidemic rate declined rapidly after intervention measures were implemented (rt≈0). ConclusionThis rare rotavirus infection diarrhea outbreak among adults in confined settings suggests that the construction of public health prevention and control systems in prison may be overlooked. Cross infection during meal processing and distribution in the canteens of such settings is likely to be the cause of the outbreak. Given the potential neglect of public heath system construction in special settings, it is imperative to enhance the surveillance and monitoring of rotavirus and other intestinal multi-pathogens among adults, as well as the construction of public health prevention and control systems in these special settings.
2.Mechanism of vanillic acid against cardiac fibrosis induced by isoproterenol in mice based on Drp1/HK1/NLRP3 and mitochondrial apoptosis signaling pathways.
Hai-Bo HE ; Mian WU ; Jie XU ; Qian-Qian XU ; Fang-Zhu WAN ; Hua-Qiao ZHONG ; Ji-Hong ZHANG ; Gang ZHOU ; Hui-Lin QIN ; Hao-Ran LI ; Hai-Ming TANG
China Journal of Chinese Materia Medica 2025;50(8):2193-2208
This study investigated the effects and underlying mechanisms of vanillic acid(VA) against cardiac fibrosis(CF) induced by isoproterenol(ISO) in mice. Male C57BL/6J mice were randomly divided into control group, VA group(100 mg·kg~(-1), ig), ISO group(10 mg·kg~(-1), sc), ISO + VA group(10 mg·kg~(-1), sc + 100 mg·kg~(-1), ig), ISO + dynamin-related protein 1(Drp1) inhibitor(Mdivi-1) group(10 mg·kg~(-1), sc + 50 mg·kg~(-1), ip), and ISO + VA + Mdivi-1 group(10 mg·kg~(-1), sc + 100 mg·kg~(-1), ig + 50 mg·kg~(-1), ip). The treatment groups received the corresponding medications once daily for 14 consecutive days. On the day after the last administration, cardiac functions were evaluated, and serum and cardiac tissue samples were collected. These samples were analyzed for serum aspartate aminotransferase(AST), lactate dehydrogenase(LDH), creatine kinase-MB(CK-MB), cardiac troponin I(cTnI), reactive oxygen species(ROS), interleukin(IL)-1β, IL-4, IL-6, IL-10, IL-18, and tumor necrosis factor-α(TNF-α) levels, as well as cardiac tissue catalase(CAT), glutathione(GSH), malondialdehyde(MDA), myeloperoxidase(MPO), superoxide dismutase(SOD), total antioxidant capacity(T-AOC) activities, and cytochrome C levels in mitochondria and cytoplasm. Hematoxylin-eosin, Masson, uranium acetate and lead citrate staining were used to observe morphological and mitochondrial ultrastructural changes in the cardiac tissues, and myocardial injury area and collagen volume fraction were calculated. Flow cytometry was applied to detect the relative content and M1/M2 polarization of cardiac macrophages. The mRNA expression levels of macrophage polarization markers [CD86, CD206, arginase 1(Arg-1), inducible nitric oxide synthase(iNOS)], CF markers [type Ⅰ collagen(Coll Ⅰ), Coll Ⅲ, α-smooth muscle actin(α-SMA)], and cytokines(IL-1β, IL-4, IL-6, IL-10, IL-18, TNF-α) in cardiac tissues were determined by quantitative real-time PCR. Western blot was used to detect the protein expression levels of Coll Ⅰ, Coll Ⅲ, α-SMA, Drp1, p-Drp1, voltage-dependent anion channel(VDAC), hexokinase 1(HK1), NOD-like receptor protein 3(NLRP3), apoptosis-associated speck-like protein(ASC), caspase-1, cleaved-caspase-1, gasdermin D(GSDMD), cleaved N-terminal gasdermin D(GSDMD-N), IL-1β, IL-18, B-cell lymphoma-2(Bcl-2), B-cell lymphoma-xl(Bcl-xl), Bcl-2-associated death promoter(Bad), Bcl-2-associated X protein(Bax), apoptotic protease activating factor-1(Apaf-1), pro-caspase-3, cleaved-caspase-3, pro-caspase-9, cleaved-caspase-9, poly(ADP-ribose) polymerase-1(PARP-1), and cleaved-PARP-1 in cardiac tissues. The results showed that VA significantly improved cardiac function in mice with CF, reduced myocardial injury area and cardiac index, and decreased serum levels of AST, CK-MB, cTnI, LDH, ROS, IL-1β, IL-6, IL-18, and TNF-α. VA also lowered MDA and MPO levels, mRNA expressions of IL-1β, IL-6, IL-18, and TNF-α, and mRNA and protein expressions of Coll Ⅰ, Coll Ⅲ, and α-SMA in cardiac tissues, and increased serum levels of IL-4 and IL-10, cardiac tissue levels of CAT, GSH, SOD, and T-AOC, and mRNA expressions of IL-4 and IL-10. Additionally, VA ameliorated cardiac pathological damage, inhibited myocardial cell apoptosis, inflammatory infiltration, and collagen fiber deposition, reduced collagen volume fraction, and alleviated mitochondrial damage. VA decreased the ratio of F4/80~+CD86~+ M1 cells and the mRNA expressions of CD86 and iNOS in cardiac tissue, and increased the ratio of F4/80~+CD206~+ M2 cells and the mRNA expressions of CD206 and Arg-1. VA also reduced protein expressions of p-Drp1, VDAC, NLRP3, ASC, caspase-1, cleaved-caspase-1, GSDMD, GSDMD-N, IL-1β, IL-18, Bad, Bax, Apaf-1, cleaved-caspase-3, cleaved-caspase-9, cleaved-PARP-1, and cytoplasmic cytochrome C, and increased the expressions of HK1, Bcl-2, Bcl-xl, pro-caspase-3, pro-caspase-9 proteins, as well as the Bcl-2/Bax and Bcl-xl/Bad ratios and mitochondrial cytochrome C content. These results indicate that VA has a significant ameliorative effect on ISO-induced CF in mice, alleviates ISO-induced oxidative damage and inflammatory response, and its mechanism may be closely related to the inhibition of Drp1/HK1/NLRP3 and mitochondrial apoptosis signaling pathways, suppression of myocardial cell inflammatory infiltration and collagen fiber deposition, reduction of collagen volume fraction and CollⅠ, Coll Ⅲ, and α-SMA expressions, thus mitigating CF.
Animals
;
Isoproterenol/adverse effects*
;
Male
;
Mice
;
Signal Transduction/drug effects*
;
Vanillic Acid/administration & dosage*
;
Dynamins/genetics*
;
Mice, Inbred C57BL
;
Fibrosis/genetics*
;
Apoptosis/drug effects*
;
Mitochondria/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Myocardium/metabolism*
;
Humans
3.Rapid characterization and identification of non-volatile components in Rhododendron tomentosum by UHPLC-Q-TOF-MS method.
Su-Ping XIAO ; Long-Mei LI ; Bin XIE ; Hong LIANG ; Qiong YIN ; Jian-Hui LI ; Jie DU ; Ji-Yong WANG ; Run-Huai ZHAO ; Yan-Qin XU ; Yun-Bo SUN ; Zong-Yuan LU ; Peng-Fei TU
China Journal of Chinese Materia Medica 2025;50(11):3054-3069
This study aimed to characterize and identify the non-volatile components in aqueous and ethanolic extracts of the stems and leaves of Rhododendron tomentosum by using sensitive and efficient ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry(UHPLC-Q-TOF-MS) combined with a self-built information database. By comparing with reference compounds, analyzing fragment ion information, searching relevant literature, and using a self-built information database, 118 compounds were identified from the aqueous and ethanolic extracts of R. tomentosum, including 35 flavonoid glycosides, 15 phenolic glycosides, 12 flavonoids, 7 phenolic acids, 7 phenylethanol glycosides, 6 tannins, 6 phospholipids, 5 coumarins, 5 monoterpene glycosides, 6 triterpenes, 3 fatty acids, and 11 other types of compounds. Among them, 102 compounds were reported in R. tomentosum for the first time, and 36 compounds were identified by comparing them with reference compounds. The chemical components in the ethanolic and aqueous extracts of R. tomentosum leaves and stems showed slight differences, with 84 common chemical components accounting for 71.2% of the total 118 compounds. This study systematically characterized and identified the non-volatile chemical components in the ethanolic and aqueous extracts of R. tomentosum for the first time. The findings provide a reference for active ingredient research, quality control, and product development of R. tomentosum.
Rhododendron/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Mass Spectrometry/methods*
;
Plant Leaves/chemistry*
4.Effects of combined use of active ingredients in Buyang Huanwu Decoction on oxygen-glucose deprivation/reglucose-reoxygenation-induced inflammation and oxidative stress of BV2 cells.
Tian-Qing XIA ; Ying CHEN ; Jian-Lin HUA ; Qin SU ; Cun-Yan DAN ; Meng-Wei RONG ; Shi-Ning GE ; Hong GUO ; Bao-Guo XIAO ; Jie-Zhong YU ; Cun-Gen MA ; Li-Juan SONG
China Journal of Chinese Materia Medica 2025;50(14):3835-3846
This study aims to explore the effects and action mechanisms of the active ingredients in Buyang Huanwu Decoction(BYHWD), namely tetramethylpyrazine(TMP) and hydroxy-safflor yellow A(HSYA), on oxygen-glucose deprivation/reglucose-reoxygenation(OGD/R)-induced inflammation and oxidative stress of microglia(MG). Network pharmacology was used to screen the effective monomer ingredients of BYHWD and determine the safe concentration range for each component. Inflammation and oxidative stress models were established to further screen the best ingredient combination and optimal concentration ratio with the most effective anti-inflammatory and antioxidant effects. OGD/R BV2 cell models were constructed, and BV2 cells in the logarithmic growth phase were divided into a normal group, a model group, an HSYA group, a TMP group, and an HSYA + TMP group. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of inflammatory cytokines such as interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6). Oxidative stress markers, including superoxide dismutase(SOD), nitric oxide(NO), and malondialdehyde(MDA), were also measured. Western blot was used to analyze the protein expression of both inflammation-related pathway [Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)] and oxidative stress-related pathway [nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)]. Immunofluorescence was used to assess the expression of proteins such as inducible nitric oxide synthase(iNOS) and arginase-1(Arg-1). The most effective ingredients for anti-inflammatory and antioxidant effects in BYHWD were TMP and HSYA. Compared to the normal group, the model group showed significantly increased levels of IL-1β, TNF-α, IL-6, NO, and MDA, along with significantly higher protein expression of NF-κB, TLR4, Nrf2, and HO-1 and significantly lower SOD levels. The differences between the two groups were statistically significant. Compared to the model group, both the HSYA group and the TMP group showed significantly reduced levels of IL-1β, TNF-α, IL-6, NO, and MDA, lower expression of NF-κB and TLR4 proteins, higher levels of SOD, and significantly increased protein expression of Nrf2 and HO-1. Additionally, the expression of the M1-type MG marker iNOS was significantly reduced, while the expression of the M2-type MG marker Arg-1 was significantly increased. The results of the HSYA group and the TMP group had statistically significant differences from those of the model group. Compared to the HSYA group and the TMP group, the HSYA + TMP group showed further significant reductions in IL-1β, TNF-α, IL-6, NO, and MDA levels, along with significant reductions in NF-κB and TLR4 protein expression, an increase in SOD levels, and elevated Nrf2 and HO-1 protein expression. Additionally, the expression of the M1-type MG marker iNOS was reduced, while the M2-type MG marker Arg-1 expression increased significantly in the HSYA + TMP group compared to the TMP or HSYA group. The differences in the results were statistically significant between the HSYA + TMP group and the TMP or HSYA group. The findings indicated that the combined use of HSYA and TMP, the active ingredients of BYHWD, can effectively inhibit OGD/R-induced inflammation and oxidative stress of MG, showing superior effects compared to the individual use of either component.
Oxidative Stress/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Mice
;
Glucose/metabolism*
;
Cell Line
;
Inflammation/genetics*
;
Oxygen/metabolism*
;
Pyrazines/pharmacology*
;
Microglia/metabolism*
;
NF-E2-Related Factor 2/immunology*
;
NF-kappa B/immunology*
;
Toll-Like Receptor 4/immunology*
;
Anti-Inflammatory Agents/pharmacology*
;
Humans
5.Mechanism of Reactive Oxygen/Nitrogen Species in Liver Ischemia-Reperfusion Injury and Preventive Effect of Chinese Medicine.
Lei GAO ; Yun-Jia LI ; Jia-Min ZHAO ; Yu-Xin LIAO ; Meng-Chen QIN ; Jun-Jie LI ; Hao SHI ; Nai-Kei WONG ; Zhi-Ping LYU ; Jian-Gang SHEN
Chinese journal of integrative medicine 2025;31(5):462-473
Liver ischemia-reperfusion injury (LIRI) is a pathological process involving multiple injury factors and cell types, with different stages. Currently, protective drugs targeting a single condition are limited in efficacy, and interventions on immune cells will also be accompanied by a series of side effects. In the current bottleneck research stage, the multi-target and obvious clinical efficacy of Chinese medicine (CM) is expected to become a breakthrough point in the research and development of new drugs. In this review, we summarize the roles of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in various stages of hepatic ischemia-reperfusion and on various types of cells. Combined with the current research progress in reducing ROS/RNS with CM, new therapies and mechanisms for the treatment of hepatic ischemia-reperfusion are discussed.
Reperfusion Injury/drug therapy*
;
Reactive Oxygen Species/metabolism*
;
Reactive Nitrogen Species/metabolism*
;
Humans
;
Liver/drug effects*
;
Animals
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/pharmacology*
6.A Retrospective Study of Pregnancy and Fetal Outcomes in Mothers with Hepatitis C Viremia.
Wen DENG ; Zi Yu ZHANG ; Xin Xin LI ; Ya Qin ZHANG ; Wei Hua CAO ; Shi Yu WANG ; Xin WEI ; Zi Xuan GAO ; Shuo Jie WANG ; Lin Mei YAO ; Lu ZHANG ; Hong Xiao HAO ; Xiao Xue CHEN ; Yuan Jiao GAO ; Wei YI ; Yao XIE ; Ming Hui LI
Biomedical and Environmental Sciences 2025;38(7):829-839
OBJECTIVE:
To investigate chronic hepatitis C virus (HCV) infection's effect on gestational liver function, pregnancy and delivery complications, and neonatal development.
METHODS:
A total of 157 HCV antibody-positive (anti-HCV[+]) and HCV RNA(+) patients (Group C) and 121 anti-HCV(+) and HCV RNA(-) patients (Group B) were included as study participants, while 142 anti-HCV(-) and HCV RNA(-) patients (Group A) were the control group. Data on biochemical indices during pregnancy, pregnancy complications, delivery-related information, and neonatal complications were also collected.
RESULTS:
Elevated alanine aminotransferase (ALT) rates in Group C during early, middle, and late pregnancy were 59.87%, 43.95%, and 42.04%, respectively-significantly higher than Groups B (26.45%, 15.70%, 10.74%) and A (23.94%, 19.01%, 6.34%) ( P < 0.05). Median ALT levels in Group C were significantly higher than in Groups A and B at all pregnancy stages ( P < 0.05). No significant differences were found in neonatal malformation rates across groups ( P > 0.05). However, neonatal jaundice incidence was significantly greater in Group C (75.16%) compared to Groups A (42.25%) and B (57.02%) ( χ 2 = 33.552, P < 0.001). HCV RNA positivity during pregnancy was an independent risk factor for neonatal jaundice ( OR = 2.111, 95% CI 1.242-3.588, P = 0.006).
CONCLUSIONS
Chronic HCV infection can affect the liver function of pregnant women, but does not increase the pregnancy or delivery complication risks. HCV RNA(+) is an independent risk factor for neonatal jaundice.
Humans
;
Female
;
Pregnancy
;
Adult
;
Pregnancy Complications, Infectious/epidemiology*
;
Retrospective Studies
;
Pregnancy Outcome
;
Infant, Newborn
;
Viremia/virology*
;
Hepatitis C
;
Hepacivirus/physiology*
;
Hepatitis C, Chronic/virology*
;
Young Adult
;
Alanine Transaminase/blood*
7.Research Progress in the Function and Regulation of Sirtuin 3 in Sepsis-Related Diseases.
Jun-Jie LI ; Hong MEI ; Xin-Xin LIU ; Kun YU ; Bang-Hai FENG ; Bao FU ; Song QIN
Acta Academiae Medicinae Sinicae 2025;47(4):601-610
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection,with a high mortality rate.Sirtuin 3,a deacetylase within mitochondria,plays an important regulatory role in cellular metabolism,oxidative stress,and inflammatory responses.In recent years,significant progress has been made in the study of the function and regulatory role of sirtuin 3 in sepsis-related diseases.Research has shown that sirtuin 3 can alleviate organ damage caused by sepsis by regulating mitochondrial function,reducing oxidative stress,and inhibiting inflammatory responses.The specific mechanisms include the regulation of mitochondrial bioenergetics,activation of antioxidant enzyme systems,and inhibition of inflammatory mediator expression.In addition,sirtuin 3 plays a protective role in the pathological process of sepsis by interacting with multiple signaling pathways.This article summarizes the functions and regulatory mechanisms of sirtuin 3 in various sepsis-related diseases,aiming to provide new targets and strategies for the prevention and treatment of sepsis in the future.
Sepsis/metabolism*
;
Sirtuin 3/physiology*
;
Humans
;
Animals
;
Oxidative Stress
;
Mitochondria/metabolism*
;
Signal Transduction
8.MDM2 regulates H 2O 2 induced alveolar type II epithelial cell injury through p53/Bcl-2/Bax axis
Jie ZHENG ; Bowen CHEN ; Hong MEI ; Xinxin LIU ; Zhenliang LIAO ; Kun YU ; Hong YU ; Banghai FENG ; Miao CHEN ; Xiaoyun FU ; Song QIN
Chinese Journal of Emergency Medicine 2024;33(8):1110-1116
Objective:To explore the function of MDM2 and its relationship with p53 at the cellular level during H 2O 2 induced oxidative damage. Methods:MLE-12 HALI cell models were established using 0.5 mmol/L H 2O 2, and were divided into three groups: normal control group, H 2O 2 injury group, H 2O 2+MDM2 overexpressed group, and H 2O 2+MDM2 shRNA group. Infection of MLE-12 cells with adenovirus vector overexpressing and silencing MDM2; Using immunoprecipitation (Co-IP) to analyze the interaction between MDM2 and p53; Western blotting was used to detect the protein expression levels of MDM2, p53, Bcl-2, Bax, and cleared caspase-3 after HALI modeling; Measure the apoptosis rate of cells in each group. Results:After transcriptome sequencing,the p53 signaling pathway closely related to HALI. Compared with the normal group, the expression of MDM2 in the H 2O 2 injury group was lower ( P<0.05); Compared with the H 2O 2 injury group, overexpression of MDM2 resulted in a decrease in the apoptosis rate of MLE-12 cells ( P<0.05), a decrease in the expression levels of p53, Bax, and cleared caspase-3 proteins, and an upregulation of MDM2 and Bcl-2 protein expression ( P<0.05). Compared with the H 2O 2 injury group, when MDM2 was silenced, the cell apoptosis rate increased ( P<0.05), and the expression levels of p53, Bax, and cleared caspase-3 proteins were upregulated, while the expression levels of MDM2 and Bcl-2 proteins decreased ( P<0.05). Co-IP experiments showed that MDM2 binds to p53 protein. Conclusions:MDM2 can exert a protective effect on HALI by inhibiting MLE-12 cell apoptosis through the p53/Bcl-2/Bax axis.
9.The cytochrome P4501A1 (CYP1A1) inhibitor bergamottin enhances host tolerance to multidrug-resistant Vibrio vulnificus infection
Ruo-Bai QIAO ; Wei-Hong DAI ; Wei LI ; Xue YANG ; Dong-Mei HE ; Rui GAO ; Yin-Qin CUI ; Ri-Xing WANG ; Xiao-Yuan MA ; Fang-Jie WANG ; Hua-Ping LIANG
Chinese Journal of Traumatology 2024;27(5):295-304
Purpose::Vibrio vulnificus ( V. Vulnificus) infection is characterized by rapid onset, aggressive progression, and challenging treatment. Bacterial resistance poses a significant challenge for clinical anti-infection treatment and is thus the subject of research. Enhancing host infection tolerance represents a novel infection prevention strategy to improve patient survival. Our team initially identified cytochrome P4501A1 (CYP1A1) as an important target owing to its negative modulation of the body's infection tolerance. This study explored the superior effects of the CYP1A1 inhibitor bergamottin compared to antibiotic combination therapy on the survival of mice infected with multidrug-resistant V. Vulnificus and the protection of their vital organs. Methods::An increasing concentration gradient method was used to induce multidrug-resistant V. Vulnificus development. We established a lethal infection model in C57BL/6J male mice and evaluated the effect of bergamottin on mouse survival. A mild infection model was established in C57BL/6J male mice, and the serum levels of creatinine, urea nitrogen, aspartate aminotransferase, and alanine aminotransferase were determined using enzyme-linked immunosorbent assay to evaluate the effect of bergamottin on liver and kidney function. The morphological changes induced in the presence of bergamottin in mouse organs were evaluated by hematoxylin and eosin staining of liver and kidney tissues. The bacterial growth curve and organ load determination were used to evaluate whether bergamottin has a direct antibacterial effect on multidrug-resistant V. Vulnificus. Quantification of inflammatory factors in serum by enzyme-linked immunosorbent assay and the expression levels of inflammatory factors in liver and kidney tissues by real-time quantitative polymerase chain reaction were performed to evaluate the effect of bergamottin on inflammatory factor levels. Western blot analysis of IκBα, phosphorylated IκBα, p65, and phosphorylated p65 protein expression in liver and kidney tissues and in human hepatocellular carcinomas-2 and human kidney-2 cell lines was used to evaluate the effect of bergamottin on the nuclear factor kappa-B signaling pathway. One-way ANOVA and Kaplan-Meier analysis were used for statistical analysis. Results::In mice infected with multidrug-resistant V. Vulnificus, bergamottin prolonged survival ( p = 0.014), reduced the serum creatinine ( p = 0.002), urea nitrogen ( p = 0.030), aspartate aminotransferase ( p = 0.029), and alanine aminotransferase ( p = 0.003) levels, and protected the cellular morphology of liver and kidney tissues. Bergamottin inhibited interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α expression in serum (IL-1β: p = 0.010, IL-6: p = 0.029, TNF-α: p = 0.025) and inhibited the protein expression of the inflammatory factors IL-1β, IL-6, TNF-α in liver (IL-1β: p = 0.010, IL-6: p = 0.011, TNF-α: p = 0.037) and kidney (IL-1β: p = 0.016, IL-6: p = 0.011, TNF-α: p = 0.008) tissues. Bergamottin did not affect the proliferation of multidrug-resistant V. Vulnificus or the bacterial load in the mouse peritoneal lavage fluid ( p = 0.225), liver ( p = 0.186), or kidney ( p = 0.637). Conclusion::Bergamottin enhances the tolerance of mice to multidrug-resistant V. Vulnificus infection. This study can serve as a reference and guide the development of novel clinical treatment strategies for V. Vulnificus.
10.In vitro expression and functional analyses of the mutants p.R243Q,p.R241C and p.Y356X of the human phenylalanine hydroxylase
Yong-Hong PANG ; Xiang-Yu GAO ; Zhen-Ya YUAN ; Hui HUANG ; Zeng-Qin WANG ; Lei PENG ; Yi-Qun LI ; Jie LIU ; Dong LIU ; Gui-Rong CHEN
Chinese Journal of Contemporary Pediatrics 2024;26(2):188-193
Objective To study the in vitro expression of three phenylalanine hydroxylase(PAH)mutants(p.R243Q,p.R241C,and p.Y356X)and determine their pathogenicity.Methods Bioinformatics techniques were used to predict the impact of PAH mutants on the structure and function of PAH protein.Corresponding mutant plasmids of PAH were constructed and expressed in HEK293T cells.Quantitative reverse transcription polymerase chain reaction was used to measure the mRNA expression levels of the three PAH mutants,and their protein levels were assessed using Western blot and enzyme-linked immunosorbent assay.Results Bioinformatics analysis predicted that all three mutants were pathogenic.The mRNA expression levels of the p.R243Q and p.R241C mutants in HEK293T cells were similar to the mRNA expression level of the wild-type control(P>0.05),while the mRNA expression level of the p.Y356X mutant significantly decreased(P<0.05).The PAH protein expression levels of all three mutants were significantly reduced compared to the wild-type control(P<0.05).The extracellular concentration of PAH protein was reduced in the p.R241C and p.Y356X mutants compared to the wild-type control(P<0.05),while there was no significant difference between the p.R243Q mutant and the wild type control(P>0.05).Conclusions p.R243Q,p.R241C and p.Y356X mutants lead to reduced expression levels of PAH protein in eukaryotic cells,with p.R241C and p.Y356X mutants also affecting the function of PAH protein.These three PAH mutants are to be pathogenic.[Chinese Journal of Contemporary Pediatrics,2024,26(2):188-193]

Result Analysis
Print
Save
E-mail