1.Terms Related to The Study of Biomacromolecular Condensates
Ke RUAN ; Xiao-Feng FANG ; Dan LI ; Pi-Long LI ; Yi LIN ; Zheng WANG ; Yun-Yu SHI ; Ming-Jie ZHANG ; Hong ZHANG ; Cong LIU
Progress in Biochemistry and Biophysics 2025;52(4):1027-1035
Biomolecular condensates are formed through phase separation of biomacromolecules such as proteins and RNAs. These condensates exhibit liquid-like properties that can futher transition into more stable material states. They form complex internal structures via multivalent weak interactions, enabling precise spatiotemporal regulations. However, the use of inconsistent and non-standardized terminology has become increasingly problematic, hindering academic exchange and the dissemination of scientific knowledge. Therefore, it is necessary to discuss the terminology related to biomolecular condensates in order to clarify concepts, promote interdisciplinary cooperation, enhance research efficiency, and support the healthy development of this field.
2.Dissecting Causal Relationships Between Gut Microbiota, 1400 Blood Metabolites, and Intervertebral Disc Degeneration
Yuxi LIU ; Daxiong FENG ; Hong ZHANG ; Likun WANG
Neurospine 2025;22(1):211-221
Objective:
The precise mechanisms driving intervertebral disc degeneration (IVDD) development remain unclear, but evidence suggests a significant involvement of gut microbiota (GM) and blood metabolites. We aimed to investigate the causal relationships between GM, IVDD, and blood metabolites using Mendelian randomization (MR) analysis.
Methods:
We utilized the summary statistics of GM from the MiBioGen consortium, 1400 blood metabolites from the genome-wide association studies (GWAS) Catalog, and IVDD data from the FinnGen repository, which are sourced from the largest GWAS conducted to date. Employing bidirectional MR analyses, we investigated the causal relationships between GM and IVDD. Additionally, we conducted 2 mediation analyses, 2-step MR and multivariable MR (MVMR), to identify potential mediating metabolites.
Results:
Five bacterial genera were causally associated with IVDD, while IVDD did not show a significant causal effect on GM. In the 2-step MR analysis, Eubacteriumfissicatenagroup, RuminococcaceaeUCG003, Lachnoclostridium, and Marvinbryantia genera, along with metabolites X-24949, Pimeloylcarnitine/3-methyladipoylcarnitine (C7-DC), X-24456, histidine, 2-methylserine, Phosphocholine, and N-delta-acetylornithine, were all significantly associated with IVDD (all p < 0.05). MVMR analysis revealed that the associations between Eubacteriumfissicatenagroup genus and IVDD were mediated by X-24949 (8.1%, p = 0.024); Lachnoclostridium genus and IVDD were mediated by histidine (18.1%, p = 0.013); and RuminococcaceaeUCG003 genus and IVDD were mediated by C7-DC (-7.5%, p = 0.041).
Conclusion
The present MR study offers evidence supporting the causal relationships between several specific GM taxa and IVDD, as well as identifying potential mediating metabolites.
3.Dissecting Causal Relationships Between Gut Microbiota, 1400 Blood Metabolites, and Intervertebral Disc Degeneration
Yuxi LIU ; Daxiong FENG ; Hong ZHANG ; Likun WANG
Neurospine 2025;22(1):211-221
Objective:
The precise mechanisms driving intervertebral disc degeneration (IVDD) development remain unclear, but evidence suggests a significant involvement of gut microbiota (GM) and blood metabolites. We aimed to investigate the causal relationships between GM, IVDD, and blood metabolites using Mendelian randomization (MR) analysis.
Methods:
We utilized the summary statistics of GM from the MiBioGen consortium, 1400 blood metabolites from the genome-wide association studies (GWAS) Catalog, and IVDD data from the FinnGen repository, which are sourced from the largest GWAS conducted to date. Employing bidirectional MR analyses, we investigated the causal relationships between GM and IVDD. Additionally, we conducted 2 mediation analyses, 2-step MR and multivariable MR (MVMR), to identify potential mediating metabolites.
Results:
Five bacterial genera were causally associated with IVDD, while IVDD did not show a significant causal effect on GM. In the 2-step MR analysis, Eubacteriumfissicatenagroup, RuminococcaceaeUCG003, Lachnoclostridium, and Marvinbryantia genera, along with metabolites X-24949, Pimeloylcarnitine/3-methyladipoylcarnitine (C7-DC), X-24456, histidine, 2-methylserine, Phosphocholine, and N-delta-acetylornithine, were all significantly associated with IVDD (all p < 0.05). MVMR analysis revealed that the associations between Eubacteriumfissicatenagroup genus and IVDD were mediated by X-24949 (8.1%, p = 0.024); Lachnoclostridium genus and IVDD were mediated by histidine (18.1%, p = 0.013); and RuminococcaceaeUCG003 genus and IVDD were mediated by C7-DC (-7.5%, p = 0.041).
Conclusion
The present MR study offers evidence supporting the causal relationships between several specific GM taxa and IVDD, as well as identifying potential mediating metabolites.
4.Dissecting Causal Relationships Between Gut Microbiota, 1400 Blood Metabolites, and Intervertebral Disc Degeneration
Yuxi LIU ; Daxiong FENG ; Hong ZHANG ; Likun WANG
Neurospine 2025;22(1):211-221
Objective:
The precise mechanisms driving intervertebral disc degeneration (IVDD) development remain unclear, but evidence suggests a significant involvement of gut microbiota (GM) and blood metabolites. We aimed to investigate the causal relationships between GM, IVDD, and blood metabolites using Mendelian randomization (MR) analysis.
Methods:
We utilized the summary statistics of GM from the MiBioGen consortium, 1400 blood metabolites from the genome-wide association studies (GWAS) Catalog, and IVDD data from the FinnGen repository, which are sourced from the largest GWAS conducted to date. Employing bidirectional MR analyses, we investigated the causal relationships between GM and IVDD. Additionally, we conducted 2 mediation analyses, 2-step MR and multivariable MR (MVMR), to identify potential mediating metabolites.
Results:
Five bacterial genera were causally associated with IVDD, while IVDD did not show a significant causal effect on GM. In the 2-step MR analysis, Eubacteriumfissicatenagroup, RuminococcaceaeUCG003, Lachnoclostridium, and Marvinbryantia genera, along with metabolites X-24949, Pimeloylcarnitine/3-methyladipoylcarnitine (C7-DC), X-24456, histidine, 2-methylserine, Phosphocholine, and N-delta-acetylornithine, were all significantly associated with IVDD (all p < 0.05). MVMR analysis revealed that the associations between Eubacteriumfissicatenagroup genus and IVDD were mediated by X-24949 (8.1%, p = 0.024); Lachnoclostridium genus and IVDD were mediated by histidine (18.1%, p = 0.013); and RuminococcaceaeUCG003 genus and IVDD were mediated by C7-DC (-7.5%, p = 0.041).
Conclusion
The present MR study offers evidence supporting the causal relationships between several specific GM taxa and IVDD, as well as identifying potential mediating metabolites.
5.Dissecting Causal Relationships Between Gut Microbiota, 1400 Blood Metabolites, and Intervertebral Disc Degeneration
Yuxi LIU ; Daxiong FENG ; Hong ZHANG ; Likun WANG
Neurospine 2025;22(1):211-221
Objective:
The precise mechanisms driving intervertebral disc degeneration (IVDD) development remain unclear, but evidence suggests a significant involvement of gut microbiota (GM) and blood metabolites. We aimed to investigate the causal relationships between GM, IVDD, and blood metabolites using Mendelian randomization (MR) analysis.
Methods:
We utilized the summary statistics of GM from the MiBioGen consortium, 1400 blood metabolites from the genome-wide association studies (GWAS) Catalog, and IVDD data from the FinnGen repository, which are sourced from the largest GWAS conducted to date. Employing bidirectional MR analyses, we investigated the causal relationships between GM and IVDD. Additionally, we conducted 2 mediation analyses, 2-step MR and multivariable MR (MVMR), to identify potential mediating metabolites.
Results:
Five bacterial genera were causally associated with IVDD, while IVDD did not show a significant causal effect on GM. In the 2-step MR analysis, Eubacteriumfissicatenagroup, RuminococcaceaeUCG003, Lachnoclostridium, and Marvinbryantia genera, along with metabolites X-24949, Pimeloylcarnitine/3-methyladipoylcarnitine (C7-DC), X-24456, histidine, 2-methylserine, Phosphocholine, and N-delta-acetylornithine, were all significantly associated with IVDD (all p < 0.05). MVMR analysis revealed that the associations between Eubacteriumfissicatenagroup genus and IVDD were mediated by X-24949 (8.1%, p = 0.024); Lachnoclostridium genus and IVDD were mediated by histidine (18.1%, p = 0.013); and RuminococcaceaeUCG003 genus and IVDD were mediated by C7-DC (-7.5%, p = 0.041).
Conclusion
The present MR study offers evidence supporting the causal relationships between several specific GM taxa and IVDD, as well as identifying potential mediating metabolites.
6.Dissecting Causal Relationships Between Gut Microbiota, 1400 Blood Metabolites, and Intervertebral Disc Degeneration
Yuxi LIU ; Daxiong FENG ; Hong ZHANG ; Likun WANG
Neurospine 2025;22(1):211-221
Objective:
The precise mechanisms driving intervertebral disc degeneration (IVDD) development remain unclear, but evidence suggests a significant involvement of gut microbiota (GM) and blood metabolites. We aimed to investigate the causal relationships between GM, IVDD, and blood metabolites using Mendelian randomization (MR) analysis.
Methods:
We utilized the summary statistics of GM from the MiBioGen consortium, 1400 blood metabolites from the genome-wide association studies (GWAS) Catalog, and IVDD data from the FinnGen repository, which are sourced from the largest GWAS conducted to date. Employing bidirectional MR analyses, we investigated the causal relationships between GM and IVDD. Additionally, we conducted 2 mediation analyses, 2-step MR and multivariable MR (MVMR), to identify potential mediating metabolites.
Results:
Five bacterial genera were causally associated with IVDD, while IVDD did not show a significant causal effect on GM. In the 2-step MR analysis, Eubacteriumfissicatenagroup, RuminococcaceaeUCG003, Lachnoclostridium, and Marvinbryantia genera, along with metabolites X-24949, Pimeloylcarnitine/3-methyladipoylcarnitine (C7-DC), X-24456, histidine, 2-methylserine, Phosphocholine, and N-delta-acetylornithine, were all significantly associated with IVDD (all p < 0.05). MVMR analysis revealed that the associations between Eubacteriumfissicatenagroup genus and IVDD were mediated by X-24949 (8.1%, p = 0.024); Lachnoclostridium genus and IVDD were mediated by histidine (18.1%, p = 0.013); and RuminococcaceaeUCG003 genus and IVDD were mediated by C7-DC (-7.5%, p = 0.041).
Conclusion
The present MR study offers evidence supporting the causal relationships between several specific GM taxa and IVDD, as well as identifying potential mediating metabolites.
7.THBS4 in Disease: Mechanisms, Biomarkers, and Therapeutic Opportunities
De-Ying HUANG ; Yan-Hong LI ; Xiu-Feng BAI ; Yi LIU
Progress in Biochemistry and Biophysics 2025;52(9):2217-2232
Thrombospondin 4 (THBS4; TSP4), a crucial component of the extracellular matrix (ECM), serves as an important regulator of tissue homeostasis and various pathophysiological processes. As a member of the evolutionarily conserved thrombospondin family, THBS4 is a multidomain adhesive glycoprotein characterized by six distinct structural domains that mediate its diverse biological functions. Through dynamic interactions with various ECM components, THBS4 plays pivotal roles in cell adhesion, proliferation, inflammation regulation, and tissue remodeling, establishing it as a key modulator of microenvironmental organization. The transcription and translation of THBS4 gene, as well as the activity of the THBS4 protein, are tightly regulated by multiple signaling pathways and extracellular cues. Positive regulators of THBS4 include transforming growth factor-β (TGF-β), interferon-γ (IFNγ), granulocyte-macrophage colony-stimulating factor (GM-CSF), bone morphogenetic proteins (BMP12/13), and other regulatory factors (such as B4GALNT1, ITGA2/ITGB1, PDGFRβ, etc.), which upregulate THBS4 at the mRNA and/or protein level. Conversely, oxidized low-density lipoprotein (OXLDL) acts as a potent negative regulator of THBS4. This intricate regulatory network ensures precise spatial and temporal control of THBS4 expression in response to diverse physiological and pathological stimuli. Functionally, THBS4 acts as a critical signaling hub, influencing multiple downstream pathways essential for cellular behavior and tissue homeostasis. The best-characterized pathways include: (1) the PI3K/AKT/mTOR axis, which THBS4 modulates through both direct and indirect interactions with integrins and growth factor receptors; (2) Wnt/β-catenin signaling, where THBS4 functions as either an activator or inhibitor depending on the cellular context; (3) the suppression of DBET/TRIM69, contributing to its diverse regulatory roles. These signaling connections position THBS4 as a master regulator of cellular responses to microenvironmental changes. Substantial evidence links aberrant THBS4 expression to a range of pathological conditions, including neoplastic diseases, cardiovascular disorders, fibrotic conditions, neurodegenerative diseases, musculoskeletal disorders, and atopic dermatitis. In cancer biology, THBS4 exhibits context-dependent roles, functioning either as a tumor suppressor or promoter depending on the tumor type and microenvironment. In the cardiovascular system, THBS4 contributes to both adaptive remodeling and maladaptive fibrotic responses. Its involvement in fibrotic diseases arises from its ability to regulate ECM deposition and turnover. The diagnostic and therapeutic potential of THBS4 is particularly promising in oncology and cardiovascular medicine. As a biomarker, THBS4 expression patterns correlate significantly with disease progression and patient outcomes. Therapeutically, targeting THBS4-mediated pathways offers novel opportunities for precision medicine approaches, including anti-fibrotic therapies, modulation of the tumor microenvironment, and enhancement of tissue repair. This comprehensive review systematically explores three key aspects of THBS4 research(1) the fundamental biological functions of THBS4 in ECM organization; (2) its mechanistic involvement in various disease pathologies; (3) its emerging potential as both a diagnostic biomarker and therapeutic target. By integrating recent insights from molecular studies, animal models, and clinical investigations, this review provides a framework for understanding the multifaceted roles of THBS4 in health and disease. The synthesis of current knowledge highlights critical research gaps and future directions for exploring THBS4-targeted interventions across multiple disease contexts. Given its unique position at the intersection of ECM biology and cellular signaling, THBS4 represents a promising frontier for the development of novel diagnostic tools and therapeutic strategies in precision medicine.
8.Timing, surgical approach, and uterine manipulator use in total hysterectomy after loop electrosurgical excision procedure: Implications for perioperative risks in patients with high-grade squamous intraepithelial lesion.
Xiaoyu HOU ; Junyang LI ; Bingjie MEI ; Jiao PEI ; Mingfeng FENG ; Hong LIU ; Guonan ZHANG ; Dengfeng WANG
Chinese Medical Journal 2025;138(20):2672-2674
9.Mechanism of Naoxintong Capsules in treatment of rats with multiple cerebral infarctions and myocardial injury based on HIF-1α/VEGF pathway.
Xiao-Lu ZHANG ; Jin-Feng SHANG ; Yin-Lian WEN ; Gui-Jin-Feng HUANG ; Bo-Hong WANG ; Wan-Ting WEI ; Wen-Bin CHEN ; Xin LIU
China Journal of Chinese Materia Medica 2025;50(7):1889-1899
This study aims to explore whether Naoxintong Capsules improve multiple cerebral infarctions and myocardial injury via promoting angiogenesis, thereby exerting a simultaneous treatment effect on both the brain and heart. Male SD rats were randomly divided into six groups: sham-operated group, model group, high-dose, medium-dose, and low-dose groups of Naoxintong Capsules(440, 220, and 110 mg·kg~(-1)), and nimodipine group(10.8 mg·kg~(-1)). Rat models of multiple cerebral infarctions were established by injecting autologous thrombus, and samples were collected and tested seven days after modeling. Evaluations included multiple cerebral infarction model assessments, neurological function scores, grip strength tests, and rotarod tests, so as to evaluate neuromotor functions. Morphological structures of brain and heart tissue were observed using hematoxylin-eosin(HE) staining, Nissl staining, and Masson staining. Network pharmacology was employed to screen the mechanisms of Naoxintong Capsules in improving multiple cerebral infarctions and myocardial injury. Neuronal and myocardial cell ultrastructures were observed using transmission electron microscopy. Apoptosis rate in brain neuronal cells was detected by TdT-mediated dUTP nick end labeling(TUNEL) staining, and reactive oxygen species(ROS) levels in myocardial cells were measured. Immunofluorescence was used to detect the expression of platelet endothelial cell adhesion molecule-1(CD31), antigen identified by monoclonal antibody Ki67(Ki67), hematopoietic progenitor cell antigen CD34(CD34), and hypoxia inducible factor-1α(HIF-1α) in brain and myocardial tissue. Western blot, and real-time quantitative polymerase chain reaction(RT-qPCR) were used to detect the expression of HIF-1α, vascular endothelial growth factor(VEGF), vascular endothelial growth factor receptor 2(VEGFR2), sarcoma(Src), basic fibroblast growth factor(bFGF), angiopoietin-1(Ang-1), and TEK receptor tyrosine kinase(Tie-2). Compared with the model group, the medium-dose group of Naoxintong Capsules showed significantly lower neurological function scores, increased grip strength, and prolonged time on the rotarod. Pathological damage in brain and heart tissue was reduced, with increased and more orderly arranged mitochondria in neurons and cardiomyocytes. Apoptosis in brain neuronal cells was decreased, and ROS levels in cardiomyocytes were reduced. The microvascular density and endothelial cells of new blood vessels in brain and heart tissue increased, with increased overlapping regions of CD31 and Ki67 expression. The relative protein and mRNA expression levels of HIF-1α, VEGF, VEGFR2, Src, Ang-1, Tie-2, and bFGF were elevated in brain tissue and myocardial tissue. Naoxintong Capsules may improve multiple cerebral infarctions and myocardial injury by mediating HIF-1α/VEGF expression to promote angiogenesis.
Animals
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Rats
;
Cerebral Infarction/genetics*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Vascular Endothelial Growth Factor A/genetics*
;
Capsules
;
Signal Transduction/drug effects*
;
Humans
;
Brain/metabolism*
;
Myocardium/metabolism*
;
Apoptosis/drug effects*
10.Biosynthesis of ganoderic acid and its derivatives.
Hong-Yan SONG ; Wan YANG ; Li-Wei LIU ; Xia-Ying CHENG ; Dong-Feng YANG ; Zong-Qi YANG
China Journal of Chinese Materia Medica 2025;50(5):1155-1163
Ganoderic acid is a class of lanostane-type triterpenoids found in Ganoderma species, and is one of the most important pharmacologically active components in G. lucidum, exhibiting antioxidant, anti-neuropsychiatric, anti-tumor, and immune-enhancing properties. The content of ganoderic acid in G. lucidum is very low, and the traditional extraction process is complex, yielding minimal amounts at high cost. The biosynthetic pathway of G. lucidum triterpenoids(GLTs), including the synthesis of different structural forms of ganoderic acid from lanosterol, as well as the molecular regulatory mechanisms involving key regulatory enzyme genes and their functions, are not yet fully understood. With the continuous development of synthetic biology technologies, there has been a deeper understanding of the biosynthesis and metabolic regulation pathways of ganoderic acid and its derivatives at the molecular level. Research has explored the key regulatory enzyme genes related to ganoderic acid biosynthesis and their functions. Moreover, through the optimization of synthetic biology and culture conditions, large-scale production and preparation of GLTs at the cellular level have been achieved. This paper reviews and analyzes the latest research progress on the biosynthesis pathways and metabolic regulation of GLTs, focusing on the configuration of ganoderic acid and its derivatives, the biosynthetic pathways, key enzyme genes, transcription factors related to ganoderic acid biosynthesis, signal transduction mechanisms, and factors affecting triterpenoid biotransformation. This review is expected to provide a theoretical basis and technical reference for improving the efficient production of triterpenoid pharmacological components and the exploitation and utilization of G. lucidum resources.
Triterpenes/chemistry*
;
Reishi/chemistry*
;
Biosynthetic Pathways
;
Lanosterol

Result Analysis
Print
Save
E-mail