1.Research on compaction behavior of traditional Chinese medicine compound extract powders based on unsupervised learning
Ying FANG ; Yan-long HONG ; Xiao LIN ; Lan SHEN ; Li-jie ZHAO
Acta Pharmaceutica Sinica 2025;60(2):506-513
Direct compression is an ideal method for tablet preparation, but it requires the powder's high functional properties. The functional properties of the powder during compression directly affect the quality of the tablet. 15 parameters such as Py, FES-8KN,
2.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
3.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
4.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
5.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
6.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
7.Role of sphingosine-1-phosphate signaling in the proliferation of breast cancer BT549 cells
Juan SONG ; Ming WANG ; Xin-Yang LIU ; Hao-Tian ZHANG ; Qi ZHANG ; Xue-Mei ZHAO ; Ying LIU ; Hong-Xia CUI
The Chinese Journal of Clinical Pharmacology 2024;40(11):1578-1582
Objective To study the role of sphingosine-1-phosphate(S1P)signal on the proliferation of breast cancer BT549 cells.Methods Cells were divided into control group and experimental group,experimental group were treated with 0.1,1.0,10.0 μmol·L-1 S1P receptor agonist SEW2871 for 72 h.Control group was cultured with 0.1%fetal bovine serum.Cell proliferation was detected by methyl thiazolyl tetrazolium(MTT)assay.Cell models of overexpressing S1P receptors in BT549 were divided into three groups:blank plasmid group(LUC),wild type S1P receptor overexpression group(WT),S1P receptor phosphorylation site mutation overexpression group(MUT);the proliferation ratio was detected by MTT,the number of cell clones was counted by colony formation experiment.S1P antagonist W146(10 μmol·L-1)and protein kinase(AKT)signaling inhibitor MK2206(90 nmol·L-1)were used to detect the role of S1P signaling in the proliferation of breast cancer cells.The expression of phosphorylate signal transducer and activator of transcription 3(p-STAT3),c-Myc proteins were detected by Western blot.Results The growth ratio of BT549 cells in control group and 0.1,1.0,10.0 μmol·L-1experimental groups were 1.00±0.03,1.13±0.06,1.06±0.10 and 1.07±0.03,0.1 μmol·L-1 SEW2871 promot the cell proliferation(P<0.05).Compared between WT group,MUT group and LUC group,the growth rate and the number of clonal colonies were increased after overexpression of S1P receptor(all P<0.05).The growth ratio of BT549 cells after treatment with W146 and MK2206 in the LUC group,WT group and MUT group were 1.25±0.12,1.31±0.03,1.43±0.14 and 0.87±0.15,0.77±0.03,0.88±0.02.Compared between MUT group,WT group and corresponding DMSO group,the differences were statistically significant(all P<0.01).The number of cell clony formation number after treatment with W146 were 65.65±5.12,141.48±5.63 and 93.64±5.14;compared between MUT,WT group and corresponding DMSO group,the differences were statistically significant(all P<0.05).The relative protein expression levels of p-STAT3 in LUC group,WT group and MUT group were 0.67±0.04,0.69±0.08 and 0.81±0.06,the relative protein expression levels of proto-oncogene c-Myc were 1.69±0.03,0.70±0.10 and 0.67±0.07,compared between WT group,MUT group and corresponding DMSO group,the difference was statistically significant(P<0.05).Conclusion S1P signaling can promote proliferation in breast cancer BT549 cells,and the mechanism could be related to AKT and STAT3 signaling pathway.
8.Targeting platelet-immune cell interaction as a new strategy for post-myocardial infarction current evidence and future prospective
Lin-hong HAN ; Yu-han ZHAO ; Xiao-ying WANG ; Yan ZHU
Acta Pharmaceutica Sinica 2024;59(6):1519-1526
Myocardial infarction (MI) is a fatal disease with high morbidity and mortality. Platelets are major players of thrombosis and inflammation after acute myocardial infarction. There is growing evidence that platelets mediate inflammation, participate in dead tissue removal and heart remodeling through direct or indirect interactions with immune cells post-MI. This paper reviews the type of interactions between platelets and immune cells after myocardial infarction, and summarizes the mechanism of platelet interaction with different immune cells, such as neutrophils, monocytes, and macrophages, to mediate cardiac injury and repair through up-regulation of surface receptors and release of immune regulatory mediators post-MI. Therapeutic strategies targeting the interaction between platelets and immune cells for myocardial infarction is also presented, to provide reference for the exploration of new immune therapy targets for myocardial infarction.
9.The Role and Mechanism of Bone Muscle Crosstalk in The Prevention and Treatment of Osteoscarcopenia
Chang-Hong ZHAO ; Fei-Fei WANG ; Hong-Qiang LIAN ; Ye-Ying WANG
Progress in Biochemistry and Biophysics 2024;51(11):2936-2946
Osteoscarcopenia (OS) is a common degenerative syndrome in the elderly, which is caused by a decrease in both bone and muscle mass during the aging process, leading to osteoporosis and sarcopenia, a decrease in body balance, and a risk of falls and fractures, posing a serious threat to the quality of life and lifespan of the elderly. Osteoskeletal dystrophy increases with age, and its occurrence is higher in females than that in males. At present, there is no unified diagnostic standard, making it impossible to achieve early detection and intervention. The commonly used diagnostic methods include quantitative computed tomography (CT), magnetic resonance imaging (MRI), dual energy X-ray absorptiometry (DXA), muscle mass bioelectrical impedance analysis (BIA), as well as daily gait speed (UGS), short physical performance battery (SPPB), timed start test (TUG), and biochemical evaluation indicators to improve early diagnosis and screening. Due to the fact that both bones and muscles belong to the motor system, osteoporosis and sarcopenia share common pathogenic factors in genetics, endocrine, paracrine, and fat infiltration, which interact and regulate each other, inducing the occurrence of osteoscarcopenia. Osteoporosis and sarcopenia, two age-related diseases, share the same pathogenesis and regulatory pathways, as well as common drug targets. For example: somatostatin α‑actin-3, peroxisome proliferator activated receptor γ coactivation factor-1α (PGC-1α), myocyte enhancer factor-2 (MEF2C), sterol regulatory element binding transcription factor 1 (SREBF1), protoadhesion 7 (PCDH7) and methyltransferase like 21C (METTL21C), osteocalcin and bone derived bone factor gap junction connexin 43 (Cx43), growth hormone (GH), sex hormones, and diseases (such as tumors, diabetes, polycystic ovary syndrome, cardiovascular disease, anemia, disability, inflammatory disease), aging, nutrition, and poor living habits are closely related to osteosarcopenia. Osteoporosis is characterized by low bone mass and microstructural degeneration of bone tissue, while sarcopenia is characterized by loss of muscle mass, strength, and function, both of which often coexist in the elderly population. Exercise regulates muscle and skeletal cytokines such as myostatin (MSTN) and irisinβ‑aminoisobutyric acid (BAIBA), brain derived neutrophil factor (BDNF), interleukin, prostaglandin E2, Wnt, osteocalcin (OCN), and transforming growth factor‑β (TGF‑β) and receptor activator of NF-κB ligand (RANKL) interfere with each other to prevent and treat osteoscarcopenia. Wnt/β‑catenin signaling pathway can simultaneously regulate the growth and metabolism of bones and muscles, and promote osteoblast proliferation, maturation, and mineralization by increasing OPG/RANKL, which is beneficial for bone mass increase and induces proliferation of muscle satellite cells, stimulating and promoting increased muscle synthesis. NF‑κB pathway is the main regulatory factor for inflammation mediated muscle atrophy. Meanwhile, NF‑κB DNA can participate in RANKL inducing osteoclast differentiation in bone tissue, thereby reducing bone mass. Although exercise and nutrition can improve the symptoms of osteoporosis, they cannot be completely cured, and there are no specific drugs in clinical practice that can cure sarcopenia. Because osteoscarcopenia has a common crosstalk mechanism in the aging process, it is of great significance to prevent osteoscarcopenia by improving bone mass and muscle content through exercise, nutrition, and medication.
10.Gene mutation analysis of glucose-6-phosphate dehydrogenase deficiency among infants in Kunming
Guoqi CHEN ; Baosheng ZHU ; Jing HE ; Yuancun ZHAO ; Ying CHAN ; Junyue LIN ; Xiaoyan ZHOU ; Hong CHEN ; Yinhong ZHANG
Chinese Journal of Laboratory Medicine 2024;47(3):293-300
Objective:To analyze the genetic mutation characteristics of glucose-6-phosphate dehydrogenase (G6PD) deficiency among infants in Kunming.Methods:A total of 15 533 infants (7 994 males and 7 539 females) born in Kunming from January 1, 2018, to December 31, 2020, with an age range of 2 to 44 days, were selected. G6PD enzyme activity and gene mutation types were detected using fluorescence quantitative analysis, multicolor melting curve analysis (MMCA), and Sanger sequencing. Droplet digital PCR (ddPCR) was used for quantitative analysis of a newly identified variant family to determine the mutant allele proportion in family members. Meanwhile,the protein structure model and pathogenicity prediction of the novel variant were analyzed.Data analysis was conducted using SPSS 26.0. Specifically, chi-square tests were used for the detection rates of G6PD enzyme activity and gene mutations between different genders. One-way analysis of variance (ANOVA) was used for the comparison of enzyme activity among different mutation types.Results:Among 15 533 infants, 143 cases (129 males and 14 females) were tested positive for G6PD activity, with a detection rate of 0.92% (143/15 533). The difference in detection rates between males and females was statistically significant (χ 2=96.76, P<0.001). Out of 89 enzyme activity-positive cases (83 males and 6 females) underwent genetic testing, 77 (72 males and 5 females) were detected by MMCAand other 12 negative samples were underwent further Sanger sequencing, revealing mutations in 6 samples, all of which were males. Among the 83 individuals with gene mutations, 78 had heterozygous mutations, 1 had a homozygous mutation, and 4 had compound heterozygous mutations. A total of 12 mutation types were detected, with G6PD c.487G>A, c.1024C>T, c.1388G>A, and c.1376G>T being the most common, accounting for 74.70% (62/83) of all mutation types. The average G6PD enzyme activity of c.1376G>T was the lowest, and the differences were statistically significant compared to the average enzyme activity of the other three mutations ( P<0.05). One male infant with a newly identified G6PD c.242G>C mutation was detected, predicted to be pathogenic. ddPCR confirmed that the mother of the affected child was a c.242G>C mutant chimera, with a chimera proportion of 6.66%. Conclusions:In the Kunming region, the predominant G6PD deficiency gene mutation is c.487G>A, with the detection of a novel G6PD c.242G>C mutation. The application of ddPCR technology can assist in detecting the proportion of mutation chimeras.

Result Analysis
Print
Save
E-mail