1.Regenerative Functions of Regulatory T Cells and Current Strategies Utilizing Mesenchymal Stem Cells in Immunomodulatory Tissue Regeneration
Jinsung AHN ; Bowon KIM ; Alvin Bacero BELLO ; James J. MOON ; Yoshie ARAI ; Soo-Hong LEE
Tissue Engineering and Regenerative Medicine 2025;22(2):167-180
BACKGROUND:
Regulatory T cells (Tregs) are essential for maintaining immune homeostasis and facilitating tissue regeneration by fostering an environment conducive to tissue repair. However, in damaged tissues, excessive inflammatory responses can overwhelm the immunomodulatory capacity of Tregs, compromising their functionality and potentially hindering effective regeneration. Mesenchymal stem cells (MSCs) play a key role in enhancing Treg function. MSCs enhance Treg activity through indirect interactions, such as cytokine secretion, and direct interactions via membrane proteins.
METHODS:
This review examines the regenerative functions of Tregs across various tissues, including bone, cartilage, muscle, and skin, and explores strategies to enhance Treg functionality using MSCs. Advanced techniques, such as the overexpression of relevant genes in MSCs, are highlighted for their potential to further enhance Treg function. Additionally, emerging technologies utilizing extracellular vesicles (EVs) and cell membrane-derived vesicles derived from MSCs offer promising alternatives to circumvent the potential side effects associated with live cell therapies. This review proposes approaches to enhance Treg function and promote tissue regeneration and also outlines future research directions.
RESULTS
AND CONCLUSION: This review elucidates recent technological advancements aimed at enhancing Treg function using MSCs and examines their potential to improve tissue regeneration efficiency.
2.Regenerative Functions of Regulatory T Cells and Current Strategies Utilizing Mesenchymal Stem Cells in Immunomodulatory Tissue Regeneration
Jinsung AHN ; Bowon KIM ; Alvin Bacero BELLO ; James J. MOON ; Yoshie ARAI ; Soo-Hong LEE
Tissue Engineering and Regenerative Medicine 2025;22(2):167-180
BACKGROUND:
Regulatory T cells (Tregs) are essential for maintaining immune homeostasis and facilitating tissue regeneration by fostering an environment conducive to tissue repair. However, in damaged tissues, excessive inflammatory responses can overwhelm the immunomodulatory capacity of Tregs, compromising their functionality and potentially hindering effective regeneration. Mesenchymal stem cells (MSCs) play a key role in enhancing Treg function. MSCs enhance Treg activity through indirect interactions, such as cytokine secretion, and direct interactions via membrane proteins.
METHODS:
This review examines the regenerative functions of Tregs across various tissues, including bone, cartilage, muscle, and skin, and explores strategies to enhance Treg functionality using MSCs. Advanced techniques, such as the overexpression of relevant genes in MSCs, are highlighted for their potential to further enhance Treg function. Additionally, emerging technologies utilizing extracellular vesicles (EVs) and cell membrane-derived vesicles derived from MSCs offer promising alternatives to circumvent the potential side effects associated with live cell therapies. This review proposes approaches to enhance Treg function and promote tissue regeneration and also outlines future research directions.
RESULTS
AND CONCLUSION: This review elucidates recent technological advancements aimed at enhancing Treg function using MSCs and examines their potential to improve tissue regeneration efficiency.
3.Regenerative Functions of Regulatory T Cells and Current Strategies Utilizing Mesenchymal Stem Cells in Immunomodulatory Tissue Regeneration
Jinsung AHN ; Bowon KIM ; Alvin Bacero BELLO ; James J. MOON ; Yoshie ARAI ; Soo-Hong LEE
Tissue Engineering and Regenerative Medicine 2025;22(2):167-180
BACKGROUND:
Regulatory T cells (Tregs) are essential for maintaining immune homeostasis and facilitating tissue regeneration by fostering an environment conducive to tissue repair. However, in damaged tissues, excessive inflammatory responses can overwhelm the immunomodulatory capacity of Tregs, compromising their functionality and potentially hindering effective regeneration. Mesenchymal stem cells (MSCs) play a key role in enhancing Treg function. MSCs enhance Treg activity through indirect interactions, such as cytokine secretion, and direct interactions via membrane proteins.
METHODS:
This review examines the regenerative functions of Tregs across various tissues, including bone, cartilage, muscle, and skin, and explores strategies to enhance Treg functionality using MSCs. Advanced techniques, such as the overexpression of relevant genes in MSCs, are highlighted for their potential to further enhance Treg function. Additionally, emerging technologies utilizing extracellular vesicles (EVs) and cell membrane-derived vesicles derived from MSCs offer promising alternatives to circumvent the potential side effects associated with live cell therapies. This review proposes approaches to enhance Treg function and promote tissue regeneration and also outlines future research directions.
RESULTS
AND CONCLUSION: This review elucidates recent technological advancements aimed at enhancing Treg function using MSCs and examines their potential to improve tissue regeneration efficiency.
4.Regenerative Functions of Regulatory T Cells and Current Strategies Utilizing Mesenchymal Stem Cells in Immunomodulatory Tissue Regeneration
Jinsung AHN ; Bowon KIM ; Alvin Bacero BELLO ; James J. MOON ; Yoshie ARAI ; Soo-Hong LEE
Tissue Engineering and Regenerative Medicine 2025;22(2):167-180
BACKGROUND:
Regulatory T cells (Tregs) are essential for maintaining immune homeostasis and facilitating tissue regeneration by fostering an environment conducive to tissue repair. However, in damaged tissues, excessive inflammatory responses can overwhelm the immunomodulatory capacity of Tregs, compromising their functionality and potentially hindering effective regeneration. Mesenchymal stem cells (MSCs) play a key role in enhancing Treg function. MSCs enhance Treg activity through indirect interactions, such as cytokine secretion, and direct interactions via membrane proteins.
METHODS:
This review examines the regenerative functions of Tregs across various tissues, including bone, cartilage, muscle, and skin, and explores strategies to enhance Treg functionality using MSCs. Advanced techniques, such as the overexpression of relevant genes in MSCs, are highlighted for their potential to further enhance Treg function. Additionally, emerging technologies utilizing extracellular vesicles (EVs) and cell membrane-derived vesicles derived from MSCs offer promising alternatives to circumvent the potential side effects associated with live cell therapies. This review proposes approaches to enhance Treg function and promote tissue regeneration and also outlines future research directions.
RESULTS
AND CONCLUSION: This review elucidates recent technological advancements aimed at enhancing Treg function using MSCs and examines their potential to improve tissue regeneration efficiency.
5.Regenerative Functions of Regulatory T Cells and Current Strategies Utilizing Mesenchymal Stem Cells in Immunomodulatory Tissue Regeneration
Jinsung AHN ; Bowon KIM ; Alvin Bacero BELLO ; James J. MOON ; Yoshie ARAI ; Soo-Hong LEE
Tissue Engineering and Regenerative Medicine 2025;22(2):167-180
BACKGROUND:
Regulatory T cells (Tregs) are essential for maintaining immune homeostasis and facilitating tissue regeneration by fostering an environment conducive to tissue repair. However, in damaged tissues, excessive inflammatory responses can overwhelm the immunomodulatory capacity of Tregs, compromising their functionality and potentially hindering effective regeneration. Mesenchymal stem cells (MSCs) play a key role in enhancing Treg function. MSCs enhance Treg activity through indirect interactions, such as cytokine secretion, and direct interactions via membrane proteins.
METHODS:
This review examines the regenerative functions of Tregs across various tissues, including bone, cartilage, muscle, and skin, and explores strategies to enhance Treg functionality using MSCs. Advanced techniques, such as the overexpression of relevant genes in MSCs, are highlighted for their potential to further enhance Treg function. Additionally, emerging technologies utilizing extracellular vesicles (EVs) and cell membrane-derived vesicles derived from MSCs offer promising alternatives to circumvent the potential side effects associated with live cell therapies. This review proposes approaches to enhance Treg function and promote tissue regeneration and also outlines future research directions.
RESULTS
AND CONCLUSION: This review elucidates recent technological advancements aimed at enhancing Treg function using MSCs and examines their potential to improve tissue regeneration efficiency.
6.Therapeutic effects of surgical debulking of metastatic lymph nodes in cervical cancer IIICr: a trial protocol for a phase III, multicenter, randomized controlled study (KGOG1047/DEBULK trial)
Bo Seong YUN ; Kwang-Beom LEE ; Keun Ho LEE ; Ha Kyun CHANG ; Joo-Young KIM ; Myong Cheol LIM ; Chel Hun CHOI ; Hanbyoul CHO ; Dae-Yeon KIM ; Yun Hwan KIM ; Joong Sub CHOI ; Chae Hyeong LEE ; Jae-Weon KIM ; Sang Wun KIM ; Yong Bae KIM ; Chi-Heum CHO ; Dae Gy HONG ; Yong Jung SONG ; Seob JEON ; Min Kyu KIM ; Dae Hoon JEONG ; Hyun PARK ; Seok Mo KIM ; Sang-Il PARK ; Jae-Yun SONG ; Asima MUKHOPADHYAY ; Dang Huy Quoc THINH ; Nirmala Chandralega KAMPAN ; Grace J. LEE ; Jae-Hoon KIM ; Keun-Yong EOM ; Ju-Won ROH
Journal of Gynecologic Oncology 2024;35(5):e57-
Background:
Bulky or multiple lymph node (LN) metastases are associated with poor prognosis in cervical cancer, and the size or number of LN metastases is not yet reflected in the staging system and therapeutic strategy. Although the therapeutic effects of surgical resection of bulky LNs before standard treatment have been reported in several retrospective studies, wellplanned randomized clinical studies are lacking. Therefore, the aim of the Korean Gynecologic Oncology Group (KGOG) 1047/DEBULK trial is to investigate whether the debulking surgery of bulky or multiple LNs prior to concurrent chemoradiation therapy (CCRT) improves the survival rate of patients with cervical cancer IIICr diagnosed by imaging tests.
Methods
The KGOG 1047/DEBULK trial is a phase III, multicenter, randomized clinical trial involving patients with bulky or multiple LN metastases in cervical cancer IIICr. This study will include patients with a short-axis diameter of a pelvic or para-aortic LN ≥2 cm or ≥3 LNs with a short-axis diameter ≥1 cm and for whom CCRT is planned. The treatment arms will be randomly allocated in a 1:1 ratio to either receive CCRT (control arm) or undergo surgical debulking of bulky or multiple LNs before CCRT (experimental arm). CCRT consists of extended-field external beam radiotherapy/pelvic radiotherapy, brachytherapy and LN boost, and weekly chemotherapy with cisplatin (40 mg/m 2 ), 4–6 times administered intravenously.The primary endpoint will be 3-year progression-free survival rate. The secondary endpoints will be 3-year overall survival rate, treatment-related complications, and accuracy of radiological diagnosis of bulky or multiple LNs.
7.Therapeutic effects of surgical debulking of metastatic lymph nodes in cervical cancer IIICr: a trial protocol for a phase III, multicenter, randomized controlled study (KGOG1047/DEBULK trial)
Bo Seong YUN ; Kwang-Beom LEE ; Keun Ho LEE ; Ha Kyun CHANG ; Joo-Young KIM ; Myong Cheol LIM ; Chel Hun CHOI ; Hanbyoul CHO ; Dae-Yeon KIM ; Yun Hwan KIM ; Joong Sub CHOI ; Chae Hyeong LEE ; Jae-Weon KIM ; Sang Wun KIM ; Yong Bae KIM ; Chi-Heum CHO ; Dae Gy HONG ; Yong Jung SONG ; Seob JEON ; Min Kyu KIM ; Dae Hoon JEONG ; Hyun PARK ; Seok Mo KIM ; Sang-Il PARK ; Jae-Yun SONG ; Asima MUKHOPADHYAY ; Dang Huy Quoc THINH ; Nirmala Chandralega KAMPAN ; Grace J. LEE ; Jae-Hoon KIM ; Keun-Yong EOM ; Ju-Won ROH
Journal of Gynecologic Oncology 2024;35(5):e57-
Background:
Bulky or multiple lymph node (LN) metastases are associated with poor prognosis in cervical cancer, and the size or number of LN metastases is not yet reflected in the staging system and therapeutic strategy. Although the therapeutic effects of surgical resection of bulky LNs before standard treatment have been reported in several retrospective studies, wellplanned randomized clinical studies are lacking. Therefore, the aim of the Korean Gynecologic Oncology Group (KGOG) 1047/DEBULK trial is to investigate whether the debulking surgery of bulky or multiple LNs prior to concurrent chemoradiation therapy (CCRT) improves the survival rate of patients with cervical cancer IIICr diagnosed by imaging tests.
Methods
The KGOG 1047/DEBULK trial is a phase III, multicenter, randomized clinical trial involving patients with bulky or multiple LN metastases in cervical cancer IIICr. This study will include patients with a short-axis diameter of a pelvic or para-aortic LN ≥2 cm or ≥3 LNs with a short-axis diameter ≥1 cm and for whom CCRT is planned. The treatment arms will be randomly allocated in a 1:1 ratio to either receive CCRT (control arm) or undergo surgical debulking of bulky or multiple LNs before CCRT (experimental arm). CCRT consists of extended-field external beam radiotherapy/pelvic radiotherapy, brachytherapy and LN boost, and weekly chemotherapy with cisplatin (40 mg/m 2 ), 4–6 times administered intravenously.The primary endpoint will be 3-year progression-free survival rate. The secondary endpoints will be 3-year overall survival rate, treatment-related complications, and accuracy of radiological diagnosis of bulky or multiple LNs.
8.Therapeutic effects of surgical debulking of metastatic lymph nodes in cervical cancer IIICr: a trial protocol for a phase III, multicenter, randomized controlled study (KGOG1047/DEBULK trial)
Bo Seong YUN ; Kwang-Beom LEE ; Keun Ho LEE ; Ha Kyun CHANG ; Joo-Young KIM ; Myong Cheol LIM ; Chel Hun CHOI ; Hanbyoul CHO ; Dae-Yeon KIM ; Yun Hwan KIM ; Joong Sub CHOI ; Chae Hyeong LEE ; Jae-Weon KIM ; Sang Wun KIM ; Yong Bae KIM ; Chi-Heum CHO ; Dae Gy HONG ; Yong Jung SONG ; Seob JEON ; Min Kyu KIM ; Dae Hoon JEONG ; Hyun PARK ; Seok Mo KIM ; Sang-Il PARK ; Jae-Yun SONG ; Asima MUKHOPADHYAY ; Dang Huy Quoc THINH ; Nirmala Chandralega KAMPAN ; Grace J. LEE ; Jae-Hoon KIM ; Keun-Yong EOM ; Ju-Won ROH
Journal of Gynecologic Oncology 2024;35(5):e57-
Background:
Bulky or multiple lymph node (LN) metastases are associated with poor prognosis in cervical cancer, and the size or number of LN metastases is not yet reflected in the staging system and therapeutic strategy. Although the therapeutic effects of surgical resection of bulky LNs before standard treatment have been reported in several retrospective studies, wellplanned randomized clinical studies are lacking. Therefore, the aim of the Korean Gynecologic Oncology Group (KGOG) 1047/DEBULK trial is to investigate whether the debulking surgery of bulky or multiple LNs prior to concurrent chemoradiation therapy (CCRT) improves the survival rate of patients with cervical cancer IIICr diagnosed by imaging tests.
Methods
The KGOG 1047/DEBULK trial is a phase III, multicenter, randomized clinical trial involving patients with bulky or multiple LN metastases in cervical cancer IIICr. This study will include patients with a short-axis diameter of a pelvic or para-aortic LN ≥2 cm or ≥3 LNs with a short-axis diameter ≥1 cm and for whom CCRT is planned. The treatment arms will be randomly allocated in a 1:1 ratio to either receive CCRT (control arm) or undergo surgical debulking of bulky or multiple LNs before CCRT (experimental arm). CCRT consists of extended-field external beam radiotherapy/pelvic radiotherapy, brachytherapy and LN boost, and weekly chemotherapy with cisplatin (40 mg/m 2 ), 4–6 times administered intravenously.The primary endpoint will be 3-year progression-free survival rate. The secondary endpoints will be 3-year overall survival rate, treatment-related complications, and accuracy of radiological diagnosis of bulky or multiple LNs.
9.Evaluation of the Efficacy and Safety of DW1903 in Patients with Gastritis: A Randomized, Double-Blind, Noninferiority, Multicenter, Phase 3 study
Jie-Hyun KIM ; Hwoon-Yong JUNG ; In Kyung YOO ; Seon-Young PARK ; Jae Gyu KIM ; Jae Kyu SUNG ; Jin Seok JANG ; Gab Jin CHEON ; Kyoung Oh KIM ; Tae Oh KIM ; Soo Teik LEE ; Kwang Bum CHO ; Hoon Jai CHUN ; Jong-Jae PARK ; Moo In PARK ; Jae-Young JANG ; Seong Woo JEON ; Jin Woong CHO ; Dae Hwan KANG ; Gwang Ha KIM ; Jae J. KIM ; Sang Gyun KIM ; Nayoung KIM ; Yong Chan LEE ; Su Jin HONG ; Hyun-Soo KIM ; Sora LEE ; Sang Woo LEE
Gut and Liver 2024;18(1):70-76
Background/Aims:
H2 receptor antagonists (H2RA) have been used to treat gastritis by inhibiting gastric acid. Proton pump inhibitors (PPIs) are more potent acid suppressants than H2RA.However, the efficacy and safety of low-dose PPI for treating gastritis remain unclear. The aim was to investigate the efficacy and safety of low-dose PPI for treating gastritis.
Methods:
A double-blind, noninferiority, multicenter, phase 3 clinical trial randomly assigned 476 patients with endoscopic erosive gastritis to a group using esomeprazole 10 mg (DW1903) daily and a group using famotidine 20 mg (DW1903R1) daily for 2 weeks. The full-analysis set included 319 patients (DW1903, n=159; DW1903R1, n=160) and the per-protocol set included 298 patients (DW1903, n=147; DW1903R1, n=151). The primary endpoint (erosion improvement rate) and secondary endpoint (erosion and edema cure rates, improvement rates of hemorrhage, erythema, and symptoms) were assessed after the treatment. Adverse events were compared.
Results:
According to the full-analysis set, the erosion improvement rates in the DW1903 and DW1903R1 groups were 59.8% and 58.8%, respectively. According to the per-protocol analysis, the erosion improvement rates in the DW1903 and DW1903R1 groups were 61.9% and 59.6%, respectively. Secondary endpoints were not significantly different between two groups except that the hemorrhagic improvement rate was higher in DW1903 with statistical tendency. The number of adverse events were not statistically different.
Conclusions
DW1903 of a low-dose PPI was not inferior to DW1903R1 of H2RA. Thus, lowdose PPI can be a novel option for treating gastritis (ClinicalTrials.gov Identifier: NCT05163756).
10.Differentially Expressed mRNA in Streptozotocin-Induced Diabetic Bladder Using RNA Sequencing Analysis
Jae Heon KIM ; Hee Jo YANG ; Hong J. LEE ; Yun Seob SONG
International Neurourology Journal 2023;27(3):159-166
Purpose:
To detect elements governing the pathogenesis of diabetic cystopathy (DC), mRNA sequencing was carried out for bladder tissues from normal rats and those with induced diabetes mellitus (DM). This research therefore offers possible underlying molecular pathways for the advancement of DC in relation to differential mRNA expression, together with visceral functional and architectural alterations noted in individuals with this condition.
Methods:
An intraperitoneal injection of streptozotocin (STZ) was utilized to provoke DM in male Sprague-Dawley rats. Dysregulation and significant variations between normal rats and those with induced DM were then identified by a fold change of ≥ 1.5 with a false discovery rate P < 0.05. Hierarchical clustering/heat map and Gene Ontology/DAVID reference sources were generated. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and protein-protein interaction analysis were then performed.
Results:
The diabetic rodent group exhibited a greater residual urine volume (4.0 ± 0.4 mL) than their control counterparts (0.7 ± 0.2 mL, P < 0.01) at 12 weeks after diagnosis of diabetes. Expression analysis revealed 16 upregulated and 4 downregulated genes in STZDM bladder samples. A notable increase in expression was seen in PTHLH, TNFAIP6, PRC1, MAPK10, LOC686120, CASQ2, ACTG2, PDLIM3, FCHSD1, DBN1, NKD2, PDLIM7, ATF4, RBPMS2, ITGB1 and HSPB8. A notable decrease in expression was seen in SREBLF1, PBGFR1, PBLD1 and CELF1. Major genetic themes associated with mRNA upregulation and downregulation ware identified via Gene Ontology analysis and KEGG pathways. Protein to protein interaction analysis detected PDLIM3, PDLIM7, ITGB1, ACTG2 as core high frequency nodes within the network.
Conclusions
Changes in mRNA expression together with biological process and pathways that contribute to the etiologies underlying visceral impairment of the bladder in DM are evident. Our strategy is promising for recognizing mRNAs exclusive to the bladder in DM that might offer useful targets for diagnosis and treatment.

Result Analysis
Print
Save
E-mail