1.Clematichinenoside AR protects bone marrow mesenchymal stem cells from hypoxia-induced apoptosis by maintaining mitochondrial homeostasis.
Zi-Tong ZHAO ; Peng-Cheng TU ; Xiao-Xian SUN ; Ya-Lan PAN ; Yang GUO ; Li-Ning WANG ; Yong MA
China Journal of Chinese Materia Medica 2025;50(5):1331-1339
This study aims to elucidate the role and mechanism of clematichinenoside AR(CAR) in protecting bone marrow mesenchymal stem cells(BMSCs) from hypoxia-induced apoptosis. BMSCs were isolated by the bone fragment method and identified by flow cytometry. Cells were cultured under normal conditions(37℃, 5% CO_2) and hypoxic conditions(37℃, 90% N_2, 5% CO_2) and treated with CAR. The BMSCs were classified into eight groups: control(normal conditions), CAR(normal conditions + CAR), hypoxia 24 h, hypoxia 24 h + CAR, hypoxia 48 h, hypoxia 48 h + CAR, hypoxia 72 h, and hypoxia 72 h + CAR. The cell counting kit-8(CCK-8) assay and terminal-deoxynucleoitidyl transferase mediated nick end labeling(TUNEL) were employed to measure cell proliferation and apoptosis, respectively. The number of mitochondria and mitochondrial membrane potential were measured by MitoTracker®Red CM-H2XRo staining and JC-1 staining, respectively. The level of reactive oxygen species(ROS) was measured with the DCFH-DA fluorescence probe. The protein levels of B-cell lymphoma-2 associated X protein(BAX), caspase-3, and optic atrophy 1(OPA1) were determined by Western blot. The results demonstrated that CAR significantly increased cell proliferation. Compared with the control group, the hypoxia groups showed increased apoptosis rates, reduced mitochondria, elevated ROS levels, decreased mitochondrial membrane potential, upregulated expression of BAX and caspase-3, and downregulated expression of OPA1. In comparison to the corresponding hypoxia groups, CAR intervention significantly decreased the apoptosis rate, increased mitochondria, reduced ROS levels, elevated mitochondrial membrane potential, downregulated the expression of BAX and caspase-3, and upregulated the expression of OPA1. Therefore, it can be concluded that CAR may exert an anti-apoptotic effect on BMSCs under hypoxic conditions by regulating OPA1 to maintain mitochondrial homeostasis.
Mesenchymal Stem Cells/metabolism*
;
Apoptosis/drug effects*
;
Mitochondria/metabolism*
;
Animals
;
Rats
;
Cell Hypoxia/drug effects*
;
Homeostasis/drug effects*
;
Reactive Oxygen Species/metabolism*
;
Rats, Sprague-Dawley
;
Membrane Potential, Mitochondrial/drug effects*
;
Saponins/pharmacology*
;
Caspase 3/genetics*
;
Male
;
bcl-2-Associated X Protein/genetics*
;
Bone Marrow Cells/metabolism*
;
Cell Proliferation/drug effects*
;
Protective Agents/pharmacology*
;
Cells, Cultured
2.Effects and mechanisms of total flavones of Abelmoschus manihot combined with empagliflozin in attenuating diabetic tubulopathy through multiple targets based on mitochondrial homeostasis and ZBP1-mediated PANoptosis.
Si-Yu CHA ; Meng WANG ; Yi-Gang WAN ; Si-Ping DING ; Yu WANG ; Shi-Yu SHEN ; Wei WU ; Ying-Lu LIU ; Qi-Jun FANG ; Yue TU ; Hai-Tao TANG
China Journal of Chinese Materia Medica 2025;50(13):3738-3753
This study aimed to explore the mechanisms and molecular targets of total flavones of Abelmoschus manihot(TFA) plus empagliflozin(EM) in attenuating diabetic tubulopathy(DT) by targeting mitochondrial homeostasis and pyroptosis-apoptosis-necroptosis(PANoptosis). In the in vivo study, the authors established the DT rat models through a combination of uninephrectomy, administration of streptozotocin via intraperitoneal injections, and exposure to a high-fat diet. Following modeling successfully, the DT rat models received either TFA, EM, TFA+EM, or saline(as a vehicle) by gavage for eight weeks, respectively. In the in vitro study, the authors subjected the NRK52E cells with or without knock-down Z-DNA binding protein 1(ZBP1) to a high-glucose(HG) environment and various treatments including TFA, EM, and TFA+EM. In the in vivo and in vitro studies, The authors investigated the relative characteristics of renal tubular injury and renal tubular epithelial cells damage induced by reactive oxygen species(ROS), analyzed the relative characteristics of renal tubular PANoptosis and ZBP1-mediatted PANoptosis in renal tubular epithelial cells, and compared the relative characteristics of the protein expression levels of marked molecules of mitochondrial fission in the kidneys and mitochondrial homeostasis in renal tubular epithelial cells, respectively. Furthermore, in the network pharmacology study, the authors predicted and screened targets of TFA and EM using HERB and SwissTargetPrediction databases; The screened chemical constituents and targets of TFA and EM were constructed the relative network using Cytoscape 3.7.2 network graphics software; The relative targets of DT were integrated using OMIM and GeneCards databases; The intersecting targets of TFA, EM, and DT were enriched and analyzed signaling pathways by Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG) software using DAVID database. In vivo study results showed that TFA+EM could improve renal tubular injury, the protein expression levels and characteristics of key signaling molecules in PANoptosis pathway in the kidneys, and the protein expression levels of marked molecules of mitochondrial fission in the kidneys. And that, the ameliorative effects in vivo of TFA+EM were both superior to TFA or EM. Network pharmacology study results showed that TFA+EM treated DT by regulating the PANoptosis signaling pathway. In vitro study results showed that TFA+EM could improve ROS-induced cell injury, ZBP1-mediatted PANoptosis, and mitochondrial homeostasis in renal tubular epithelial cells under a state of HG, including the protein expression levels of marked molecules of mitochondrial fission, mitochondrial ultrastructure, and membrane potential level. And that, the ameliorative effects in vitro of TFA+EM were both superior to TFA or EM. More importantly, using the NRK52E cells with knock-down ZBP1, the authors found that, indeed, ZBP1 was mediated PANoptosis in renal tubular epithelial cells as an upstream factor. In addition, TFA+EM could regulate the protein expression levels of marked signaling molecules of PANoptosis by targeting ZBP1. In summary, this study clarified that TFA+EM, different from TFA or EM, could attenuate DT with multiple targets by ameliorating mitochondrial homeostasis and inhibiting ZBP1-mediated PANoptosis. These findings provide the clear pharmacological evidence for the clinical treatment of DT with a novel strategy of TFA+EM, which is named "coordinated traditional Chinese and western medicine".
Animals
;
Rats
;
Mitochondria/metabolism*
;
Benzhydryl Compounds/administration & dosage*
;
Glucosides/administration & dosage*
;
Abelmoschus/chemistry*
;
Male
;
Homeostasis/drug effects*
;
Flavones/administration & dosage*
;
Rats, Sprague-Dawley
;
Diabetic Nephropathies/physiopathology*
;
Drugs, Chinese Herbal/administration & dosage*
;
DNA-Binding Proteins/genetics*
;
Humans
;
Apoptosis/drug effects*
3.Research Progress on the Regulation of Third-generation EGFR-TKIs Resistance in Non-small Cell Lung Cancer by Redox Homeostasis.
Ting LUO ; Chen FANG ; Feng QIU
Chinese Journal of Lung Cancer 2025;28(7):521-532
Non-small cell lung cancer (NSCLC) ranks among the most lethal malignancies worldwide. The clinical application of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) have successfully revolutionized the treatment paradigm for EGFR-mutant NSCLC, significantly prolonging progression-free survival and establishing EGFR-TKIs as the standard first-line therapy for advanced lung adenocarcinoma. However, acquired resistance remains a major obstacle to sustained clinical benefit, with mechanisms that are highly heterogeneous. A phenomenon of "oxidative stress compensation" is commonly observed in EGFR-TKIs-resistant cells, where in redox homeostasis, through the precise regulation of reactive oxygen species (ROS) generation and elimination, plays a pivotal role in maintaining the balance between tumor cell proliferation and apoptosis. This review aims to innovatively construct a theoretical framework describing how dynamic redox regulation influences resistance to third-generation EGFR-TKIs. It focuses on the multifaceted roles of ROS in both EGFR-dependent and EGFR-independent resistance mechanisms, and further explores therapeutic strategies that target ROS kinetic thresholds and antioxidant systems. These insights not only propose an innovative "metabolic checkpoint" regulatory pathway to overcome acquired resistance to third-generation EGFR-TKIs, but also lay a molecular foundation for developing the redox biomarker-based dynamic therapeutic decision-making systems, thereby facilitating a shift in NSCLC therapy from single-target inhibition toward multi-dimensional metabolic remodeling in the context of precision medicine.
.
Humans
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
ErbB Receptors/genetics*
;
Drug Resistance, Neoplasm/drug effects*
;
Lung Neoplasms/genetics*
;
Oxidation-Reduction/drug effects*
;
Homeostasis/drug effects*
;
Protein Kinase Inhibitors/therapeutic use*
;
Reactive Oxygen Species/metabolism*
;
Animals
4.Dysregulation of Iron Homeostasis Mediated by FTH Increases Ferroptosis Sensitivity in TP53-Mutant Glioblastoma.
Xuejie HUAN ; Jiangang LI ; Zhaobin CHU ; Hongliang ZHANG ; Lei CHENG ; Peng LUN ; Xixun DU ; Xi CHEN ; Qian JIAO ; Hong JIANG
Neuroscience Bulletin 2025;41(4):569-582
Iron metabolism is a critical factor in tumorigenesis and development. Although TP53 mutations are prevalent in glioblastoma (GBM), the mechanisms by which TP53 regulates iron metabolism remain elusive. We reveal an imbalance iron homeostasis in GBM via TCGA database analysis. TP53 mutations disrupted iron homeostasis in GBM, characterized by elevated total iron levels and reduced ferritin (FTH). The gain-of-function effect triggered by TP53 mutations upregulates itchy E3 ubiquitin-protein ligase (ITCH) protein expression in astrocytes, leading to FTH degradation and an increase in free iron levels. TP53-mut astrocytes were more tolerant to the high iron environment induced by exogenous ferric ammonium citrate (FAC), but the increase in intracellular free iron made them more sensitive to Erastin-induced ferroptosis. Interestingly, we found that Erastin combined with FAC treatment significantly increased ferroptosis. These findings provide new insights for drug development and therapeutic modalities for GBM patients with TP53 mutations from iron metabolism perspectives.
Ferroptosis/drug effects*
;
Humans
;
Iron/metabolism*
;
Glioblastoma/metabolism*
;
Tumor Suppressor Protein p53/metabolism*
;
Homeostasis/physiology*
;
Ferritins/metabolism*
;
Brain Neoplasms/genetics*
;
Mutation
;
Astrocytes/drug effects*
;
Cell Line, Tumor
;
Piperazines/pharmacology*
;
Quaternary Ammonium Compounds/pharmacology*
;
Ferric Compounds
5.Mechanism of Tanyu Tongzhi Formula in treatment of atherosclerosis by maintaining vascular homeostasis based on TGF-β signaling pathway.
Xiao-Shan CUI ; Hui-Yu ZHANG ; Yuan-Yuan CHEN ; Liang LI ; Jia-Ming GAO ; Wei HAO ; Cheng-Zhi XIE ; Jian-Xun LIU ; Jian-Hua FU ; Hao GUO
China Journal of Chinese Materia Medica 2024;49(23):6429-6438
This study aimed to investigate the potential mechanism and the compatibility significance of Tanyu Tongzhi Formula in treating atherosclerosis(AS) in mice based on the transforming growth factor-β(TGF-β)/Smad2/3 signaling pathway. Eight C57BL/6J mice were as assigned to a normal control group and fed a regular diet, while 35 ApoE~(-/-) mice of the same strain were fed a high-fat diet for 8 weeks to establish an AS model. The model mice were randomly divided into a model group, a Tanyu Tongzhi group(18.2 mg·kg~(-1)), a Huatan(phlegm-resolving) group(10.4 mg·kg~(-1)), and a Quyu(blood stasis-resolving) group(7.8 mg·kg~(-1)), with 8 mice in each group. Except for the normal group, all other groups continued to be fed a high-fat diet for 8 weeks to maintain the AS model, and then the mice were treated by gavage for 8 weeks. Plasma levels of total cholesterol(TC), triglycerides(TG), low-density lipoprotein cholesterol(LDL-C), high-density lipoprotein cholesterol(HDL-C), interleukin-1β(IL-1β), and interleukin-18(IL-18) were measured using enzyme-linked immunosorbent assay(ELISA). Hematoxylin and eosin(HE) staining, oil red O staining, and Russell-Movat pentachrome staining were performed to observe the pathological changes in the aortic tissue. The proportions of aortic plaque area, lipid-stained area, collagen fibers, and elastic fibers were calculated. Immunofluorescence was used to detect the protein expression levels of matrix metalloproteinase 2(MMP2) and tissue inhibitor of metalloproteinases 2(TIMP2). Western blot was used to detect the protein expression levels of TGF-β1, TGF-β2, Smad2/3, and Smad7 in aortic tissue. Real-time fluorescence quantitative PCR(RT-qPCR) was used to measure the mRNA expression levels of TGF-β receptor(TGF-βR), TGF-β1, Smad2/3, Smad7, intercellular adhesion molecule-1(ICAM-1), and vascular cell adhesion molecule-1(VCAM-1) in aortic tissue. The results showed that compared with the normal control group, the model group had increased plasma TC and LDL-C, significantly decreased HDL-C, and significantly elevated plasma IL-1β and IL-18 levels. The model group also exhibited an increased proportion of aortic plaque area, lipid-stained area, and collagen fiber area, along with significantly upregulated MMP2 and downregulated TIMP2 expression in the aortic arch. Additionally, the expression levels of TGF-βR, TGF-β1, and p-Smad2/3 proteins and mRNA in the aortic tissue were significantly elevated, while Smad7 expression was decreased. Compared with the model group, the Tanyu Tongzhi group showed significantly reduced plasma TC and LDL-C levels, significantly increased HDL-C levels, and significantly decreased plasma IL-1β and IL-18 levels. The Tanyu Tongzhi group also exhibited a significant reduction in aortic plaque size and severity, a significant downregulation of MMP2 expression in the aortic arch, and significantly decreased ICAM-1 and VCAM-1 mRNA expression levels. Moreover, the Tanyu Tongzhi group demonstrated significantly reduced expression levels of TGF-β1 and p-Smad2/3 proteins and mRNA in the aortic tissue, and an increased expression level of Smad7 protein to varying degrees. Compared with the Tanyu Tongzhi group, the Quyu group had significantly higher LDL-C levels and elevated plasma IL-1β and IL-18 levels. The Huatan group showed upregulated MMP2 expression and downregulated TIMP2 expression in the aortic arch. In conclusion, Tanyu Tongzhi Formula, which is composed based on the pathogenesis of phlegm and blood stasis, maintains vascular homeostasis by primarily regulating lipid metabolism and controlling inflammatory factors through the Huatan group, and maintaining vascular wall permeability, inhibiting plaque development, and stabilizing plaques through the Quyu group. The mechanism of action may involve inhibiting TGF-β1 expression in the aorta, reducing Smad2/3 phosphorylation, and simultaneously increasing Smad7 expression.
Animals
;
Atherosclerosis/metabolism*
;
Signal Transduction/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Mice, Inbred C57BL
;
Male
;
Transforming Growth Factor beta/genetics*
;
Humans
;
Homeostasis/drug effects*
;
Aorta/metabolism*
;
Smad2 Protein/genetics*
;
Smad3 Protein/genetics*
6.FAM64A promotes HNSCC tumorigenesis by mediating transcriptional autoregulation of FOXM1.
Xinyuan ZHAO ; Huan CHEN ; Yu QIU ; Li CUI
International Journal of Oral Science 2022;14(1):25-25
Head and neck squamous cell carcinoma (HNSCC) still lacks effective targeted treatment. Therefore, exploring novel and robust molecular targets is critical for improving the clinical outcome of HNSCC. Here, we reported that the expression levels of family with sequence similarity 64, member A (FAM64A) were significantly higher in HNSCC tissues and cell lines. In addition, FAM64A overexpression was found to be strongly associated with an unfavorable prognosis of HNSCC. Both in vitro and in vivo evidence showed that FAM64A depletion suppressed the malignant activities of HNSCC cells, and vice versa. Moreover, we found that the FAM64A level was progressively increased from normal to dysplastic to cancerous tissues in a carcinogenic 4-nitroquinoline-1-oxide mouse model. Mechanistically, a physical interaction was found between FAM64A and forkhead box protein M1 (FOXM1) in HNSCC cells. FAM64A promoted HNSCC tumorigenesis not only by enhancing the transcriptional activity of FOXM1, but also, more importantly, by modulating FOXM1 expression via the autoregulation loop. Furthermore, a positive correlation between FAM64A and FOXM1 was found in multiple independent cohorts. Taken together, our findings reveal a previously unknown mechanism behind the activation of FOXM1 in HNSCC, and FAM64A might be a promising molecular therapeutic target for treating HNSCC.
Animals
;
Carcinogenesis
;
Cell Line, Tumor
;
Cell Proliferation
;
Cell Transformation, Neoplastic
;
Head and Neck Neoplasms/genetics*
;
Homeostasis
;
Mice
;
Squamous Cell Carcinoma of Head and Neck
7.A pair of transporters controls mitochondrial Zn2+ levels to maintain mitochondrial homeostasis.
Tengfei MA ; Liyuan ZHAO ; Jie ZHANG ; Ruofeng TANG ; Xin WANG ; Nan LIU ; Qian ZHANG ; Fengyang WANG ; Meijiao LI ; Qian SHAN ; Yang YANG ; Qiuyuan YIN ; Limei YANG ; Qiwen GAN ; Chonglin YANG
Protein & Cell 2022;13(3):180-202
Zn2+ is required for the activity of many mitochondrial proteins, which regulate mitochondrial dynamics, apoptosis and mitophagy. However, it is not understood how the proper mitochondrial Zn2+ level is achieved to maintain mitochondrial homeostasis. Using Caenorhabditis elegans, we reveal here that a pair of mitochondrion-localized transporters controls the mitochondrial level of Zn2+. We demonstrate that SLC-30A9/ZnT9 is a mitochondrial Zn2+ exporter. Loss of SLC-30A9 leads to mitochondrial Zn2+ accumulation, which damages mitochondria, impairs animal development and shortens the life span. We further identify SLC-25A25/SCaMC-2 as an important regulator of mitochondrial Zn2+ import. Loss of SLC-25A25 suppresses the abnormal mitochondrial Zn2+ accumulation and defective mitochondrial structure and functions caused by loss of SLC-30A9. Moreover, we reveal that the endoplasmic reticulum contains the Zn2+ pool from which mitochondrial Zn2+ is imported. These findings establish the molecular basis for controlling the correct mitochondrial Zn2+ levels for normal mitochondrial structure and functions.
Animals
;
Caenorhabditis elegans/metabolism*
;
Cation Transport Proteins/genetics*
;
Homeostasis
;
Mitochondria/metabolism*
;
Zinc/metabolism*
8.Chinese medicinal formulae treat inflammatory bowel diseases through maintaining gut flora homeostasis.
China Journal of Chinese Materia Medica 2022;47(22):5997-6004
Inflammatory bowel disease(IBD) is a chronic and recurrent inflammatory disorder of the gut, including Crohn's disease(CD) and ulcerative colitis(UC). The occurrence and development of IBD involves multiple pathogenic factors, and the dybiosis of gut flora is recognized as an important pathogenic mechanism of IBD. Therefore, restoring and maintaining the balance of gut flora including bacteria and fungi has become an effective option for IBD treatment. Based on the theoretical basis of the interaction between gut flora and IBD, this paper followed the principle of clinical syndrome differentiation for IBD therapy by traditional Chinese medicine(TCM), and summarized several Chinese medicinal formulae commonly used in IBD patients with large intestine damp-heat syndrome, intermingled heat and cold syndrome, spleen deficiency and dampness accumulation syndrome, spleen and kidney yang deficiency syndrome, liver stagnation and spleen deficiency syndrome, and severe heat poisoning syndrome. The therapeutic and regulatory effects of Shaoyao Decoction, Qingchang Suppository, Wumei Pills, Banxia Xiexin Decoction, Shenling Baizhu Powder, Lizhong Decoction, Sishen Pills, Tongxie Yaofang, Baitouweng Decoction, Gegen Qinlian Decoction, and Houttuyniae Herba prescriptions on gut flora of IBD patients were emphasized as well as the mechanisms. This study found that Chinese medicinal formulae increased the abundance of Bacteroidetes, Bifidobacteria, Lactobacillus, and other beneficial bacteria producing short-chain fatty acids, and reduced the abundance of Enterobacteriaceae and other harmful bacteria to restore the balance of gut flora, thus treating IBD. Confronting the recalcitrance and high recurrence of IBD, Chinese medicinal formulae provide new opportunities for IBD treatment through intervening dysbiosis of gut flora.
Humans
;
Gastrointestinal Microbiome
;
Inflammatory Bowel Diseases/drug therapy*
;
Dysbiosis/drug therapy*
;
Colitis, Ulcerative/drug therapy*
;
Bacteria/genetics*
;
Homeostasis
;
China
9.Progress in the regulation of energy metabolic homeostasis by the SWI/SNF complex subunit Baf60a.
Mengyi XU ; Shiyao ZHANG ; Wenxiang ZHANG ; Chang LIU ; Siyu CHEN
Chinese Journal of Biotechnology 2021;37(2):500-512
Metabolic syndrome is a global chronic epidemic. Its pathogenesis is determined by genetic and environmental factors. Epigenetic modification is reported to regulate gene expression without altering its nucleotide sequences. In recent years, epigenetic modification is sensitively responded to environmental signals, further affecting the gene expression and signaling transduction. Among these regulators, chromatin remodeling SWI/SNF (SWItch/Sucrose non fermentable, SWI/SNF) complex subunit Baf60a plays an important role in maintaining energy homeostasis in mammals. In this paper, we described the pathophysiological roles of Baf60a in maintaining the balance of energy metabolism, including lipid metabolism, cholesterol metabolism, urea metabolism, as well as their rhythmicity. Therefore, in-depth understanding of Baf60a-orchestrated transcriptional network of energy metabolism will provide potential therapeutic targets and reliable theoretical supports for the treatment of metabolic syndrome.
Animals
;
Energy Metabolism/genetics*
;
Homeostasis
;
Lipid Metabolism
;
Signal Transduction
;
Transcription Factors/metabolism*
10.Progress on epigenetic regulation of iron homeostasis.
Lingyan DUAN ; Xiangju YIN ; Hong'en MENG ; Xuexian FANG ; Junxia MIN ; Fudi WANG
Journal of Zhejiang University. Medical sciences 2020;49(1):58-70
Iron homeostasis plays an important role for the maintenance of human health. It is known that iron metabolism is tightly regulated by several key genes, including divalent metal transport-1(), transferrin receptor 1(), transferrin receptor 2(), ferroportin(), hepcidin(), hemojuvelin() and . Recently, it is reported that DNA methylation, histone acetylation, and microRNA (miRNA) epigenetically regulated iron homeostasis. Among these epigenetic regulators, DNA hypermethylation of the promoter region of , and bone morphogenetic protein 6 () genes result in inhibitory effect on the expression of these iron-related gene. In addition, histone deacetylase (HADC) suppresses gene expression. On the contrary, HADC inhibitor upregulates gene expression. Additional reports showed that miRNA can also modulate iron absorption, transport, storage and utilization via downregulation of and other genes. It is noteworthy that some key epigenetic regulatory enzymes, such as DNA demethylase TET2 and histone lysine demethylase JmjC KDMs, require iron for the enzymatic activities. In this review, we summarize the recent progress of DNA methylation, histone acetylation and miRNA in regulating iron metabolism and also discuss the future research directions.
Epigenesis, Genetic
;
Gene Expression Regulation
;
genetics
;
Homeostasis
;
Humans
;
Iron
;
metabolism
;
Receptors, Transferrin

Result Analysis
Print
Save
E-mail