1.miRNA-181a-5p inhibits proliferation and migration of osteosarcoma cell line HOS by targeting HOXB4.
Jia-Xi LI ; Xi-Jing HE ; Fei LI ; Yu-Tian LEI ; Yu-Bing YANG ; Jing LI ; Gao-Yang ZONG ; Min-Chao ZHAO ; Su-E CHANG
China Journal of Orthopaedics and Traumatology 2022;35(11):1097-1103
OBJECTIVE:
To study the effects and mechanisms of miR-181a-5p on the proliferation, cycle and migration of HOS osteosarcoma cells.
METHODS:
Real-time quantitative PCR was used to detect the expression of miR-181a-5p and HOXB4 in osteoblast hFOB1.19 cell line and osteosarcoma cell lines (HOS, U2OS, MG63). miR-181a-5p mimics and miR-181a-5p inhibitors were respectively transfected into HOS cells by Lipofectamine 2000, and miR NC group was set as control group. CCK-8 method was used to detect the change in cell proliferation. Flow cytometry was used to detect the changes in cell cycles. Wound healing experiments and Transwell migration experiments were used to detect the changes in cell migration ability. The target gene of miR-181a-5p was predicted by Targetscan website and validated by Dual-luciferase reporter gene system and Western blot.
RESULTS:
Compared with osteoblast hFOB1.19, miR-181a-5p was low expressed in osteosarcoma cells HOS, U2OS, and MG63(P<0.05), while HOXB4 was high expressed in osteosarcoma cells HOS, U2OS, and MG63(P<0.05). Compared with the miR NC group, over expression of miR-181a-5p inhibited the proliferation and migration of osteosarcoma HOS cells, and the number of cells in S phase decreased(P<0.05). However, knockdown miR-181a-5p promoted the proliferation and migration of osteosarcoma HOS cells, the cells in S phase increased(P<0.05). Bioinformatics prediction and Dual-luciferase reporter gene system validate HOXB4 as a downstream target gene of miR-181a-5p(P<0.05). Western blot showed that miR-181a-5p over expression or knockdown significantly down-regulated or up-regulated HOXB4 expressions in the HOS cells respectively(P<0.05).
CONCLUSION
miR-181a-5p is down expressed in osteosarcoma cells, and over-expression miR-181a-5p inhibits the proliferation, cell cycle and migration ability of osteosarcoma cells by targeting HOXB4.
Humans
;
Apoptosis
;
Bone Neoplasms/genetics*
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Homeodomain Proteins/genetics*
;
MicroRNAs/metabolism*
;
Osteosarcoma/genetics*
;
Transcription Factors/genetics*
2.Genetic research progress in branchio-oto syndrome/ branchio-oto-renal syndrome.
Anhai CHEN ; Jie LING ; Yong FENG
Journal of Central South University(Medical Sciences) 2022;47(1):129-138
Branchio-oto syndrome (BOS)/branchio-oto-renal syndrome (BORS) is a kind of autosomal dominant heterogeneous disorder. These diseases are mainly characterized by hearing impairment and abnormal phenotype of ears, accompanied by renal malformation and branchial cleft anomalies including cyst or fistula, with an incidence of 1/40 000 in human population. Otic anormalies are one of the most obvious clinical manifestations of BOS/BORS, including deformities of external, middle, inner ears and hearing loss with conductive, sensorineural or mix, ranging from mild to profound loss. Temporal bone imaging could assist in the diagnosis of middle ear and inner ear malformations for clinicians. Multiple methods including direct sequencing combined with next generation sequencing (NGS), multiplex ligation-dependent probe amplification (MLPA), or array-based comparative genomic hybridization (aCGH) can effectively screen and identify pathogenic genes and/or variation types of BOS/BORS. About 40% of patients with BOS/BORS carry aberrations of EYA1 gene which is the most important cause of BOS/BORS. A total of 240 kinds of pathogenic variations of EYA1 have been reported in different populations so far, including frameshift, nonsense, missense, aberrant splicing, deletion and complex rearrangements. Human Endogenous Retroviral sequences (HERVs) may play an important role in mediating EYA1 chromosomal fragment deletion mutations caused by non-allelic homologous recombination. EYA1 encodes a phosphatase-transactivator cooperated with transcription factors of SIX1, participates in cranial sensory neurogenesis and development of branchial arch-derived organs, then regulates the morphological and functional differentiation of the outer ear, middle ear and inner ear toward normal tissues. In addition, pathogenic mutations of SIX1 and SIX5 genes can also cause BOS/BORS. Variations of these genes mentioned above may cause disease by destroying the bindings between SIX1-EYA1, SIX5-EYA1 or SIX1-DNA. However, the role of SIX5 gene in the pathogenesis of BORS needs further verification.
Branchio-Oto-Renal Syndrome/pathology*
;
Chromosome Deletion
;
Comparative Genomic Hybridization
;
Genetic Research
;
Homeodomain Proteins/genetics*
;
Humans
;
Intracellular Signaling Peptides and Proteins
;
Nuclear Proteins/metabolism*
;
Pedigree
;
Protein Tyrosine Phosphatases/metabolism*
3.The effect of HOXC10 gene on biological behaviors of glioma cells and mechanism in tumor microenvironment.
Wen Yi JIANG ; Qing Yang LEI ; Sha Sha LIU ; Li YANG ; Bo YANG ; Yi ZHANG
Chinese Journal of Oncology 2022;44(3):228-237
Objective: To study the effects of Homeobox C10 (HOXC10) on biological characteristics such as migration, invasion and proliferation of glioma cancer cells and to explore the role of HOXC10 gene in glioma microenvironment. Methods: The expression level of HOXC10 in high grade glioma (glioblastoma) and low grade glioma and its effect on patient survival were analyzed by using The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) database. Hoxc10-siRNA-1, HOXC10-siRNA-2 and siRNA negative control (NC) were transfected into U251 cells according to the operation instructions of HOXC10-siRNA transfection. 100 ng/ mL recombinant protein chemokine ligand 2 (reCCL2) was added into the transfection group, and was labeled as HOXC10-siRNA-1+ reCCL2 and HOXC10-siRNA-2+ reCCL2 groups. The expressions of HOXC10 mRNA and target protein in each group was detected by real-time fluorescence quantitative polymerase chain reaction (qRT-PCR) and western blot. The proliferation ability of cells in each group was detected by cell counting kit 8 (CCK8) method. The migration ability of cells was detected by Transwell assay and Nick assay, and cell apoptosis was detected by flow cytometry. The expression of chemokines in each group was detected by multiple factors. Co-incubation assays were performed to determine the role of HOXC10 and chemokine ligand 2 (CCL2) in recruiting and polarizing tumor-associated macrophages (M2-type macrophages). Results: The median expression level of HOXC10 in high grade gliomas was 8.51, higher than 1.00 in low grade gliomas (P<0.001) in TCGA database. The median expression level of HOXC10 in high grade gliomas was 0.83, higher than 0.00 in low grade gliomas (P=0.002) in CGGA database. The 5-year survival rate of patients with high HOXC10 expression in TCGA database was 28.2%, lower than 78.7% of those with low HOXC10 expression (P<0.001), and the 5-year survival rate of patients with high HOXC10 expression in CGGA database was 20.3%, lower than 58.0% of those with low HOXC10 expression (P<0.001). The numbers of cell migration in HOXC10-siRNA-1 group and HOXC10-siRNA-2 group were (45±3) and (69±4) respectively, lower than (159±3) in NC group (P<0.05). The cell mobility of HOXC10-siRNA-1 group and HOXC10-siRNA-2 group at 48 hours were (15±2)% and (28±4)% respectively, lower than (80±5)% of NC group (P<0.05). The expressions of vimentin in HOXC10-siRNA-1 group and HOXC10-siRNA-2 group were (141 740.00±34 024.56) and (94 655.00±5 687.97), N-cadherin were (76 810.00±14.14) and (94 254.00±701.45), β-catenin were (75 786.50±789.84) and (107 296.50±9 614.53), lower than (233 768.50±34 114.37), (237 154.50±24 715.50) and (192 449.50±24 178.10) of NC group (P<0.05). The A value of HOXC10-siRNA-1 group and HOXC10-siRNA-2 group were (0.44±0.05) and (0.32±0.02) at 96 hours, lower than 0.92±0.12 of NC group (P<0.05). The apoptosis rates of HOXC10-siRNA-1 group and HOXC10 siRNA-2 group were (10.23±1.24)% and (13.81±2.16)%, higher than (4.60±0.07)% of NC group (P<0.05). The expression levels of CCL2 in U251 cells in HOXC10-siRNA-1 and HOXC10-siRNA-2 groups were (271.63±44.27) and (371.66±50.21), lower than (933.93±29.84) in NC group (P<0.05). The expression levels of CCL5 (234.81±5.95 and 232.62±5.72), CXCL10 (544.13±48.14 and 500.87±15.65) and CXCL11 (215.75±15.30 and 176.18±16.49) in HOXC10-siRNA-1 and HOXC10-siRNA-2 groups were higher than those in NC group (9.98±0.71, 470.54±18.84 and 13.55±0.73, respectively, P<0.05). The recruited numbers of CD14(+) THP1 in HOXC10-siRNA-1 and HOXC10-siRNA-2 groups were (159.33±1.15) and (170.67±1.15), respectively, lower than (360.00±7.81) in NC group (P<0.05), while addition of reCCL2 promoted the recruitment of CD14(+) THP1 cells (287.00±3.61 and 280.67±2.31 in HOXC10-siRNA-1+ reCCL2 group and HOXC10-siRNA-2+ reCCL2 group, respectively, P<0.05). The expressions level of M2-type macrophage-related gene TGF-β in HOXC10-siRNA-1 group and HOXC10-siRNA-2 group were (0.30±0.02) and (0.28±0.02), respectively, lower than (1.06±0.10) in NC group (P<0.05). The expressions level of M1-related gene NOS2 in HOXC10-siRNA-1 and HOXC10-siRNA-2 were (11 413.95±1 911.85) and (5 894.00±945.21), respectively, higher than (13.39±4.32) in NC group (P<0.05). Conclusions: The expression of HOXC10 in glioma is high and positively correlated with the poor prognosis of glioma patients. Knockdown of HOXC10 can inhibit the proliferation, migration and metastasis of human glioma U251 cells. HOXC10 may play an immunosuppressive role in glioma microenvironment by promoting the expression of CCL2 and recruiting and polarizing tumor-associated macrophages (M2 macrophages).
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Gene Expression Regulation, Neoplastic
;
Genes, Homeobox
;
Glioma/pathology*
;
Homeodomain Proteins/metabolism*
;
Humans
;
Neoplasm Invasiveness/genetics*
;
Tumor Microenvironment
4.Two naturally derived small molecules disrupt the sineoculis homeobox homolog 1-eyes absent homolog 1 (SIX1-EYA1) interaction to inhibit colorectal cancer cell growth.
Jing WU ; Bin HUANG ; Hong-Bo HE ; Wen-Zhu LU ; Wei-Guo WANG ; Hong LIU
Chinese Medical Journal 2021;134(19):2340-2352
BACKGROUND:
Emerging evidence indicates that the sineoculis homeobox homolog 1-eyes absent homolog 1 (SIX1-EYA1) transcriptional complex significantly contributes to the pathogenesis of multiple cancers by mediating the expression of genes involved in different biological processes, such as cell-cycle progression and metastasis. However, the roles of the SIX1-EYA1 transcriptional complex and its targets in colorectal cancer (CRC) are still being investigated. This study aimed to investigate the roles of SIX1-EYA1 in the pathogenesis of CRC, to screen inhibitors disrupting the SIX1-EYA1 interaction and to evaluate the efficiency of small molecules in the inhibition of CRC cell growth.
METHODS:
Real-time quantitative polymerase chain reaction and western blotting were performed to examine gene and protein levels in CRC cells and clinical tissues (collected from CRC patients who underwent surgery in the Department of Integrated Traditional and Western Medicine, West China Hospital of Sichuan University, between 2016 and 2018, n = 24). In vivo immunoprecipitation and in vitro pulldown assays were carried out to determine SIX1-EYA1 interaction. Cell proliferation, cell survival, and cell invasion were determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, clonogenic assay, and Boyden chamber assay, respectively. The Amplified Luminescent Proximity Homogeneous Assay Screen (AlphaScreen) method was used to obtain small molecules that specifically disrupted SIX1-EYA1 interaction. CRC cells harboring different levels of SIX1/EYA1 were injected into nude mice to establish tumor xenografts, and small molecules were also injected into mice to evaluate their efficiency to inhibit tumor growth.
RESULTS:
Both SIX1 and EYA1 were overexpressed in CRC cancerous tissues (for SIX1, 7.47 ± 3.54 vs.1.88 ± 0.35, t = 4.92, P = 0.008; for EYA1, 7.61 ± 2.03 vs. 2.22 ± 0.45, t = 6.73, P = 0.005). The SIX1/EYA1 complex could mediate the expression of two important genes including cyclin A1 (CCNA1) and transforming growth factor beta 1 (TGFB1) by binding to the myocyte enhancer factor 3 consensus. Knockdown of both SIX1 and EYA1 could decrease cell proliferation, cell invasion, tumor growth, and in vivo tumor growth (all P < 0.01). Two small molecules, NSC0191 and NSC0933, were obtained using AlphaScreen and they could significantly inhibit the SIX1-EYA1 interaction with a half-maximal inhibitory concentration (IC50) of 12.60 ± 1.15 μmol/L and 83.43 ± 7.24 μmol/L, respectively. Administration of these two compounds could significantly repress the expression of CCNA1 and TGFB1 and inhibit the growth of CRC cells in vitro and in vivo.
CONCLUSIONS
Overexpression of the SIX1/EYA1 complex transactivated the expression of CCNA1 and TGFB1, causing the pathogenesis of CRC. Pharmacological inhibition of the SIX1-EYA1 interaction with NSC0191 and NSC0933 significantly inhibited CRC cell growth by affecting cell-cycle progression and metastasis.
Animals
;
Cell Line, Tumor
;
Cell Proliferation
;
Colorectal Neoplasms/genetics*
;
Gene Expression Regulation, Neoplastic
;
Genes, Homeobox
;
Homeodomain Proteins/metabolism*
;
Humans
;
Intracellular Signaling Peptides and Proteins
;
Mice
;
Mice, Nude
;
Nuclear Proteins/genetics*
;
Protein Tyrosine Phosphatases/genetics*
5.Regulation of flowering time via miR172-mediated APETALA2-like expression in ornamental gloxinia (Sinningia speciosa).
Xiao-Yan LI ; Fu GUO ; Sheng-Yun MA ; Mu-Yuan ZHU ; Wei-Huai PAN ; Hong-Wu BIAN
Journal of Zhejiang University. Science. B 2019;20(4):322-331
We investigated the microRNA172 (miR172)-mediated regulatory network for the perception of changes in external and endogenous signals to identify a universally applicable floral regulation system in ornamental plants, manipulation of which could be economically beneficial. Transgenic gloxinia plants, in which miR172 was either overexpressed or suppressed, were generated using Agrobacterium-mediated transformation. They were used to study the effect of altering the expression of this miRNA on time of flowering and to identify its mRNA target. Early or late flowering was observed in transgenic plants in which miR172 was overexpressed or suppressed, respectively. A full-length complementary DNA (cDNA) of gloxinia (Sinningia speciosa) APETALA2-like (SsAP2-like) was identified as a target of miR172. The altered expression levels of miR172 caused up- or down-regulation of SsAP2-like during flower development, which affected the time of flowering. Quantitative real-time reverse transcription PCR analysis of different gloxinia tissues revealed that the accumulation of SsAP2-like was negatively correlated with the expression of miR172a, whereas the expression pattern of miR172a was negatively correlated with that of miR156a. Our results suggest that transgenic manipulation of miR172 could be used as a universal strategy for regulating time of flowering in ornamental plants.
Arabidopsis/genetics*
;
Arabidopsis Proteins/metabolism*
;
Cloning, Molecular
;
DNA, Complementary/metabolism*
;
Flowers/physiology*
;
Gene Expression Profiling
;
Gene Expression Regulation, Plant
;
Homeodomain Proteins/metabolism*
;
Lamiales/physiology*
;
MicroRNAs/metabolism*
;
Nuclear Proteins/metabolism*
;
Plants, Genetically Modified/physiology*
;
Plasmids/metabolism*
;
Polymerase Chain Reaction
;
Transgenes
6.Influence of Fat Mass- and Obesity-Associated Genotype, Body Mass Index, and Dietary Intake on Effects of Iroquois-related Homeobox 3 Gene on Body Weight.
Maryam GHOLAMALIZADEH ; Saeid DOAEI ; Mohammad Esmail AKBARI ; Shahla REZAEI ; Alireza Mosavi JARRAHI
Chinese Medical Journal 2018;131(17):2112-2113
7.miR-124 regulates radiosensitivity of colorectal cancer cells by targeting PRRX1.
Shui-Miao LIN ; Qiong XIA ; Yu-Qin ZHANG ; Ai-Min SUN ; Yu-Sheng SHI ; Lin ZHENG ; Long-Hua CHEN
Journal of Southern Medical University 2016;36(8):1110-1116
OBJECTIVETo detect the expression of miR-124 in colorectal carcinoma (CRC) cells and tissue specimens and analyze its association with the radiosensitivity of the cells.
METHODSThe expression of miR-124 in CRC cell lines and tissues were detected using qRT-PCR. The effect of miR-124 in modulating cell radiosensitivity was assessed in CRC cells with miRNA-124 overexpression and miRNA-124 knockdown, and bioinformatics prediction and dual luciferase reporter system were employed to identify the direct target of miR-124.
RESULTSs miR-124 expression was down-regulated in CRC cell lines and tissues. CRC cells over-expressing miR-124 showed an obviously enhanced radiosensitivity, whereas miR-124 knockdown resulted in a reduced radiosensitivity of the cells. Bioinformatics prediction and dual luciferase reporter system verified PRRX1 as a direct target of miR-124, which regulated the radiosensitivity of CRC cells by directly inhibiting PRRX1.
CONCLUSIONmiR-124 can enhance the radiosensitivity of CRC cells by directly targeting PRRX1, which provides a target for improving the therapeutic effect of radiotherapy of CRC.
Cell Line, Tumor ; Colorectal Neoplasms ; pathology ; radiotherapy ; Down-Regulation ; Gene Expression Regulation, Neoplastic ; Homeodomain Proteins ; genetics ; metabolism ; Humans ; Luciferases ; MicroRNAs ; genetics ; metabolism ; Radiation Tolerance
8.Expression of HOXB4, PRDM16 and HOXA9 in Patients with Acute Myeloid Leukemia and Its Clinical Significance.
Lin LI ; Chun-Ting ZHAO ; Bo-Li CUI ; Shao-Ling WU ; Xiao-Dan LIU ; Zhan SU ; Jie YANG ; Wei WANG ; Zhong-Guang CUI ; Hong-Guo ZHAO
Journal of Experimental Hematology 2016;24(2):326-331
OBJECTIVETo investigate HOXB4, PRDM16 and HOXA9 gene expression in patients with acute myeloid leukemia (AML) and its clinical significance.
METHODSReal-time quantitative PCR (RT-qPCR) with SYBR Green assay was used to detect the expression of HOXB4, PRDM16 and HOXA9 gene in AML patients (40 cases), the patients with complete remission (9 cases) and patients with non-malignant hematologic diseases as control (10 cases). The relationship between the expression levels of gene HOXB4, PRDM16, HOXA9 and clinical features was investigated by statistical analysis.
RESULTSThe gene expression levels of HOXB4, PRDM16, HOXA9 in newly diagnosed or relapsed AML patients were significantly higher than those in patients with non-malignant hematologic disease (P < 0.05). It was observed that the expression of HOXB4 gene in newly diagnosed or relapsed patients positively correlates with leukemic blasts in bone marrow (r = 0.39). The expression levels of HOXB4, PRDM16 and HOXA9 positively correlate with each other. There was statistical significance among gene expressions in different phases (newly diagnosed, relapse, remission). No correlation was observed between expression levels of HOXB4, PRDM16, HOXA9 and chromosome risk status. It was noticed that expression levels of HOXB4, PRDM16, HOXA9 genes were lower in the patients achieved remission after two courses of chemotherapy than those in the other. And high expression group of each gene had a lower remission rate than that in the low expression group.
CONCLUSIONThe expression level of HOXB4, PRDM16, HOXA9 genes and leukemic blasts somewhat correlate with curative effect and prognosis. The expression of HOXB4, PRDM16, HOXA9 genes is higher in newly diagnosed and relapsed leukemia patients, and lower in the patients acquired CR/PR. High expression of HOXB4, PRDM16, HOXA9 genes predicts an adverse prognosis.
Bone Marrow ; Case-Control Studies ; DNA-Binding Proteins ; genetics ; metabolism ; Gene Expression ; Homeodomain Proteins ; genetics ; metabolism ; Humans ; Leukemia, Myeloid, Acute ; genetics ; metabolism ; Prognosis ; RNA, Messenger ; metabolism ; Real-Time Polymerase Chain Reaction ; Recurrence ; Remission Induction ; Transcription Factors ; genetics ; metabolism
9.Effect of Homeobox A13 transfection on epithelial-mesenchymal transition and bone morphogenetic protein-7 expression in kidney tubular epithelial cells.
Li PENG ; Qing-Nan HE ; Xiao-Yan LI ; Lan-Jun SHUAI ; Hai-Xia CHEN ; Yong-Zhen LI ; Zhu-Wen YI
Chinese Journal of Contemporary Pediatrics 2015;17(12):1342-1347
OBJECTIVETo examine the transfection of Homeobox A13 (HOXA13) on epithelial-mesenchymal transition (EMT) and the expression of bone morphogenetic protein-7 (BMP-7) induced by albumin-overload in human kidney tubular epithelial cells (HKCs).
METHODSThe cultured HKCs were treated with 20 mg/mL human serum albumin (HSA) for 48 hours. Protein expression of cytokeratin (CK), vimentin and HOXA13 in the HKCs was assessed by Western blot. Protein expression of CK, vimentin, and BMP-7 was also detected in HKCs transfected with lipofectamine contained HOXA13 DNA.
RESULTSHSA induced EMT in HKCs, presented by decreased CK expression (P<0.01) and increased vimentin expression (P<0.01). The up-regulated expression of HOXA13 transfected by lipofectamine inhibited the level of EMT induced by HSA in HKCs (P<0.05). The decreased rate of BMP-7 protein expression induced by HSA was inhibited by over-expressed HOXA13 in HKCs (P<0.05).
CONCLUSIONSTransfection of HOXA13 in HKCs could inhibit the degree of EMT induced by albumin-overload, possibly by increasing BMP-7 expression.
Bone Morphogenetic Protein 7 ; genetics ; Cells, Cultured ; Epithelial Cells ; metabolism ; Epithelial-Mesenchymal Transition ; Homeodomain Proteins ; physiology ; Humans ; Keratins ; genetics ; Kidney Tubules ; metabolism ; Transfection ; Vimentin ; genetics
10.Expression of ZEB1 in the prepuce of hypospadias children and its implication.
Yang ZHOU ; Liang QIAO ; Yong-xiang LI ; Ju-min ZHANG ; Lu-dong LIU ; Hong-kai LU
National Journal of Andrology 2015;21(6):510-514
OBJECTIVETo investigate the expression of zinc finger E-box binding homebox 1 (ZEB1) in the prepuce of hypospadias children and its relationship to the incidence of hypospadias.
METHODSPrepuce tissues were collected from 37 children aged 6-15 months undergoing hypospadias repair and 11 age-matched controls receiving circumcision. Based on the position of the urethral meatus, the hypospadias cases were classified as severe (n = 13) and mild-moderate (n = 24). The mRNA and protein expressions of ZEB1 were determined by immunohistochemistry and RT-PCR.
RESULTSThe expression of the ZEB1 protein was remarkably higher in the severe (100% [13/13]) and mild-moderate hypospadias patients (75.0% [18/24]) than in the controls (9.1% [1/11]), with statistically significant differences between any two groups (P < 0.05). RT-PCR showed the integrated density value (IDV) of the ZEB1 mRNA expression to be (0.67 ± 0.21), (0.81 ± 0.24), and (1.55 ± 0.29) in the control, mild-moderate, and severe hypospadias patients, respectively, significantly higher in the severe hypospadias than in the control and mild-moderate hypospadias groups (P < 0.05), but with no significant difference between the latter two (P = 0.64).
CONCLUSIONThe expression of ZEB1 is significantly increased in hypospadias patients, and its upregulation is positively correlated with the severity of hypospadias, which suggests that the overexpression of ZEB1 may contribute to the development of hypospadias.
Biomarkers ; metabolism ; Case-Control Studies ; Circumcision, Male ; Foreskin ; metabolism ; Homeodomain Proteins ; genetics ; metabolism ; Humans ; Hypospadias ; classification ; etiology ; metabolism ; Immunohistochemistry ; Infant ; Male ; Penis ; RNA, Messenger ; metabolism ; Transcription Factors ; genetics ; metabolism ; Up-Regulation ; Urethra ; Zinc Finger E-box-Binding Homeobox 1

Result Analysis
Print
Save
E-mail