1.Sperm RNA quantity and PRM1, PRM2 , and TH2B transcript levels reflect sperm characteristics and early embryonic development.
Bilge OZSAIT-SELCUK ; Sibel BULGURCUOGLU-KURAN ; Dilek SEVER-KAYA ; Neslihan COBAN ; Gulsen AKTAN ; Ates KADIOGLU
Asian Journal of Andrology 2025;27(1):76-83
Spermatozoa have a highly complex RNA profile. Several of these transcripts are suggested as biomarkers for male infertility and contribute to early development. To analyze the differences between sperm RNA quantity and expression of protamine ( PRM1 and PRM2 ) and testis-specific histone 2B ( TH2B ) genes, spermatozoa from 33 patients who enrolled in assisted reproduction treatment (ART) program were analyzed. Sperm RNA of teratozoospermic (T), oligoteratozoospermic (OT), and normozoospermic (N) samples was extracted, and the differences in transcript levels among the study groups were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). The correlations of total RNA per spermatozoon and the expression of the transcripts were evaluated in relation to sperm characteristics and preimplantation embryo development. The mean (±standard deviation) RNA amount per spermatozoon was 28.48 (±23.03) femtogram in the overall group and was significantly higher in the OT group than that in N and T groups. Total sperm RNA and gene expression of PRM1 and PRM2 genes were related to preimplantation embryo development and developmental arrest. Specific sperm characteristics were correlated with the expressions of PRM1 , PRM2 , or TH2B genes. We conclude that the sperm RNA amount and composition are important factors and might influence early embryonic development and also differ in different cases of male infertility.
Male
;
Humans
;
Protamines/metabolism*
;
Spermatozoa/metabolism*
;
Embryonic Development/genetics*
;
Adult
;
RNA/genetics*
;
Histones/genetics*
;
Infertility, Male/genetics*
;
Teratozoospermia/genetics*
;
Oligospermia/genetics*
2.Correlation of IGF2 levels with sperm quality, inflammation, and DNA damage in infertile patients.
Jing-Gen WU ; Cai-Ping ZHOU ; Wei-Wei GUI ; Zhong-Yan LIANG ; Feng-Bin ZHANG ; Ying-Ge FU ; Rui LI ; Fang WU ; Xi-Hua LIN
Asian Journal of Andrology 2025;27(2):204-210
Insulin-like growth factor 2 (IGF2) is a critical endocrine mediator implicated in male reproductive physiology. To investigate the correlation between IGF2 protein levels and various aspects of male infertility, specifically focusing on sperm quality, inflammation, and DNA damage, a cohort of 320 male participants was recruited from the Women's Hospital, Zhejiang University School of Medicine (Hangzhou, China) between 1 st January 2024 and 1 st March 2024. The relationship between IGF2 protein concentrations and sperm parameters was assessed, and Spearman correlation and linear regression analysis were employed to evaluate the independent associations between IGF2 protein levels and risk factors for infertility. Enzyme-linked immunosorbent assay (ELISA) was used to measure IGF2 protein levels in seminal plasma, alongside markers of inflammation (tumor necrosis factor-alpha [TNF-α] and interleukin-1β [IL-1β]). The relationship between seminal plasma IGF2 protein levels and DNA damage marker phosphorylated histone H2AX (γ-H2AX) was also explored. Our findings reveal that IGF2 protein expression decreased notably in patients with asthenospermia and teratospermia. Correlation analysis revealed nuanced associations between IGF2 protein levels and specific sperm parameters, and low IGF2 protein concentrations correlated with increased inflammation and DNA damage in sperm. The observed correlations between IGF2 protein levels and specific sperm parameters, along with its connection to inflammation and DNA damage, underscore the importance of IGF2 in the broader context of male reproductive health. These findings lay the groundwork for future research and potential therapeutic interventions targeting IGF2-related pathways to enhance male fertility.
Humans
;
Male
;
Insulin-Like Growth Factor II/metabolism*
;
Infertility, Male/genetics*
;
DNA Damage
;
Adult
;
Inflammation/metabolism*
;
Spermatozoa/metabolism*
;
Semen Analysis
;
Semen/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Histones/metabolism*
;
Interleukin-1beta/metabolism*
3.NSD1 regulates H3K36me2 in the pathogenesis of non-obstructive azoospermia.
Xuan ZHUANG ; Zhen-Xin CAI ; Yu-Feng YANG ; Zhi-Ming LI
National Journal of Andrology 2025;31(3):195-201
OBJECTIVE:
To explore the role of nuclear receptor-binding SET-domain protein 1 (NSD1) in the pathogenesis of nonobstructive azoospermia (NOA) by regulating the expressions of relevant genes.
METHODS:
We detected the expression of NSD1 in the testis tissue of 7 male patients with obstructive azoospermia (OA) and 18 with NOA by qPCR and immunofluorescence assay, and determined the modification level of H3K36me2 in the testes of two groups of patients by immunofluorescence staining, Western blot and immunoprecipitation (IP). We examined the difference in the enrichment of H3K36me2 in the testis tissue by chromatin IP-based sequencing (ChIP-Seq), analyzed the genomic distribution and target genes using bioinformatics, and verified the expression levels of the target genes in the testes of the two groups of patients by qPCR.
RESULTS:
Compared with the patients with OA, those with NOA showed dramatically decreased mRNA and protein expressions of NSD1 (P=0.000 8). The binding of NSD1 to H3K36me2 was observed in the testis tissue of both the two groups of patients, while the modification level of H3K36me2 was evidently reduced in the NOA males. H3K36me2 was distributed mainly in the intergenic region in the testes of the two groups of patients, but the enrichment of H3K36me2 was obviously decreased in the NOA group. The differentially H3K36me2-enriched genes were involved in various biological processes, including tissue development, and cell morphogenesis. Results of ChIP-Seq and qPCR showed significantly down-regulated expressions of the target genes KIT, SPO11 and ACRV1 in the testis tissue of the NOA males compared with those in the OA patients (P<0.01).
CONCLUSION
The levels of NSD1 and H3K36me2 are decreased in testis tissue of the NOA patient, H3K36me2 is highly enriched in the spermatogenesis-related key genes KIT, SPO11 and ACRV1, and the down-regulated expression of NSD1 impairs spermatogenesis.
Humans
;
Male
;
Azoospermia/genetics*
;
Testis/metabolism*
;
Histone-Lysine N-Methyltransferase/metabolism*
;
Histones/metabolism*
4.Role and mechanisms of histone methylation in osteogenic/odontogenic differentiation of dental mesenchymal stem cells.
International Journal of Oral Science 2025;17(1):24-24
Dental mesenchymal stem cells (DMSCs) are pivotal for tooth development and periodontal tissue health and play an important role in tissue engineering and regenerative medicine because of their multidirectional differentiation potential and self-renewal ability. The cellular microenvironment regulates the fate of stem cells and can be modified using various optimization techniques. These methods can influence the cellular microenvironment, activate disparate signaling pathways, and induce different biological effects. "Epigenetic regulation" refers to the process of influencing gene expression and regulating cell fate without altering DNA sequences, such as histone methylation. Histone methylation modifications regulate pivotal transcription factors governing DMSCs differentiation into osteo-/odontogenic lineages. The most important sites of histone methylation in tooth organization were found to be H3K4, H3K9, and H3K27. Histone methylation affects gene expression and regulates stem cell differentiation by maintaining a delicate balance between major trimethylation sites, generating distinct chromatin structures associated with specific downstream transcriptional states. Several crucial signaling pathways associated with osteogenic differentiation are susceptible to modulation via histone methylation modifications. A deeper understanding of the regulatory mechanisms governing histone methylation modifications in osteo-/odontogenic differentiation and immune-inflammatory responses of DMSCs will facilitate further investigation of the epigenetic regulation of histone methylation in DMSC-mediated tissue regeneration and inflammation. Here is a concise overview of the pivotal functions of epigenetic histone methylation at H3K4, H3K9, and H3K27 in the regulation of osteo-/odontogenic differentiation and renewal of DMSCs in both non-inflammatory and inflammatory microenvironments. This review summarizes the current research on these processes in the context of tissue regeneration and therapeutic interventions.
Mesenchymal Stem Cells/physiology*
;
Humans
;
Osteogenesis/genetics*
;
Histones/metabolism*
;
Cell Differentiation/physiology*
;
Methylation
;
Odontogenesis/genetics*
;
Epigenesis, Genetic
5.PDHX acetylation facilitates tumor progression by disrupting PDC assembly and activating lactylation-mediated gene expression.
Zetan JIANG ; Nanchi XIONG ; Ronghui YAN ; Shi-Ting LI ; Haiying LIU ; Qiankun MAO ; Yuchen SUN ; Shengqi SHEN ; Ling YE ; Ping GAO ; Pinggen ZHANG ; Weidong JIA ; Huafeng ZHANG
Protein & Cell 2025;16(1):49-63
Deactivation of the mitochondrial pyruvate dehydrogenase complex (PDC) is important for the metabolic switching of cancer cell from oxidative phosphorylation to aerobic glycolysis. Studies examining PDC activity regulation have mainly focused on the phosphorylation of pyruvate dehydrogenase (E1), leaving other post-translational modifications largely unexplored. Here, we demonstrate that the acetylation of Lys 488 of pyruvate dehydrogenase complex component X (PDHX) commonly occurs in hepatocellular carcinoma, disrupting PDC assembly and contributing to lactate-driven epigenetic control of gene expression. PDHX, an E3-binding protein in the PDC, is acetylated by the p300 at Lys 488, impeding the interaction between PDHX and dihydrolipoyl transacetylase (E2), thereby disrupting PDC assembly to inhibit its activation. PDC disruption results in the conversion of most glucose to lactate, contributing to the aerobic glycolysis and H3K56 lactylation-mediated gene expression, facilitating tumor progression. These findings highlight a previously unrecognized role of PDHX acetylation in regulating PDC assembly and activity, linking PDHX Lys 488 acetylation and histone lactylation during hepatocellular carcinoma progression and providing a potential biomarker and therapeutic target for further development.
Humans
;
Acetylation
;
Carcinoma, Hepatocellular/genetics*
;
Liver Neoplasms/genetics*
;
Pyruvate Dehydrogenase Complex/genetics*
;
Gene Expression Regulation, Neoplastic
;
Animals
;
Mice
;
Cell Line, Tumor
;
Protein Processing, Post-Translational
;
Histones/metabolism*
;
Disease Progression
6.Setd2 overexpression rescues bivalent gene expression during SCNT-mediated ZGA.
Xiaolei ZHANG ; Ruimin XU ; Yuyan ZHAO ; Yijia YANG ; Qi SHI ; Hong WANG ; Xiaoyu LIU ; Shaorong GAO ; Chong LI
Protein & Cell 2025;16(6):439-457
Successful cloning through somatic cell nuclear transfer (SCNT) faces significant challenges due to epigenetic obstacles. Recent studies have highlighted the roles of H3K4me3 and H3K27me3 as potential contributors to these obstacles. However, the underlying mechanisms remain largely unclear. In this study, we generated genome-wide maps of H3K4me3 and H3K27me3 in mouse pre-implantation NT embryos. Our analysis revealed that aberrantly over-represented broad H3K4me3 domain and H3K27me3 signal lead to increased bivalent marks at gene promoters in NT embryos compared with naturally fertilized (NF) embryos at the 2-cell stage, which may link to relatively low levels of H3K36me3 in NT 2-cell embryos. Notably, the overexpression of Setd2, a H3K36me3 methyltransferase, successfully restored multiple epigenetic marks, including H3K36me3, H3K4me3, and H3K27me3. In addition, it reinstated the expression levels of ZGA-related genes by reestablishing H3K36me3 at gene body regions, which excluded H3K27me3 from bivalent promoters, ultimately improving cloning efficiency. These findings highlight the excessive bivalent state at gene promoters as a potent barrier and emphasize the removal of these barriers as a promising approach for achieving higher cloning efficiency.
Animals
;
Mice
;
Histone-Lysine N-Methyltransferase/biosynthesis*
;
Histones/genetics*
;
Nuclear Transfer Techniques
;
Female
;
Gene Expression Regulation, Developmental
;
Promoter Regions, Genetic
;
Epigenesis, Genetic
;
Embryo, Mammalian/metabolism*
7.Effect of Folate Deficiency on the Changes of Histone H3 Lysine 4 Monomethylation-Marked Enhancers and Its Molecular Exploration in Low Folate-Induced Neural Tube Defects.
Qiu XIE ; Jin HU ; Jian-Ting LI ; Ting ZHANG
Acta Academiae Medicinae Sinicae 2025;47(5):782-791
Objective To investigate the effects of folate deficiency on changes in histone H3 lysine 4 (H3K4) mono-methylation (me1)-marked enhancers and the molecular mechanism underpinning the folate deficiency-induced neural tube defects (NTD). Methods Mouse embryonic stem cells (mESCs) were cultured in the folate-free DMEM medium (folate-deficient group) and the DMEM medium containing 4 mg/L folate (normal control group),respectively.Chromatin immunoprecipitation sequencing (ChIP-seq) was performed for H3K4me1. The mouse model of folate-induced NTD was established,and transcriptome sequencing (RNA-seq) was performed for the brain tissue of fetal mice to reveal the differential expression profiles.The results were validated through real-time quantitative polymerase chain reaction (RT-qPCR).The activity of the differential peak regions of H3K4me1 was verified through the luciferase reporter assay. Results The folate content in the mESCs cultured in the folate-free medium reduced compared with that in the normal control group (P=0.008).The H3K4me1-maked enhancers in the mESCs cultured in the folate-free medium induced significant changes in intronic regions,and these changes were concentrated in metabolic and energy metabolism processes (q=9.56×10-48,P=1.28×10-47).The differentially expressed genes harboring H3K4me1-marked enhancers in mESCs were mainly enriched in the Wnt signaling pathway (q=0.004,P=0.004 7).ChIP-qPCR results confirmed that H3K4me1 binding decreased in the differential peak regions of the Ldlrap1 gene (P=0.008),Camta1 gene (P=0.002),and Apc2 gene (P=0.012).The H3K4 demethylase inhibitor T-448 effectively reversed the H3K4me1 binding in the differential peak regions of the aforementioned genes (P=0.01).The results of RNA-seq for the brain tissue of NTD fetal mice showed significant enrichment of the differentially expressed genes in the Wnt signaling pathway (P=1.52×10-5).The enrichment of differential peak regions of H3K4me1-marked enhancers in Apc2,Ldlrap1,and Camta1 genes in the brain tissue also showed significant changes.The differential peak region in Apc2 exhibited transcription factor activity (P=0.020). Conclusion Folate deficiency may affect changes in H3K4me1-marked enhancers to participate in the regulation of neural tube closure genes,thereby inducing the occurrence of NTD.
Neural Tube Defects/genetics*
;
Animals
;
Mice
;
Folic Acid Deficiency/complications*
;
Histones/metabolism*
;
Folic Acid/metabolism*
;
Methylation
;
Mouse Embryonic Stem Cells/metabolism*
;
Wnt Signaling Pathway
;
Lysine/metabolism*
;
Chromatin Immunoprecipitation Sequencing
8.Identification of banana ADA1 gene family members and their expression profiles under biotic and abiotic stresses.
Qiqi ZHAO ; Wenhui REN ; Huifei ZHU ; Qiuzhen WU ; Chunyu ZHANG ; Xiaoqiong XU ; Binbin LUO ; Yuji HUANG ; Yukun CHEN ; Yuling LIN ; Zhongxiong LAI
Chinese Journal of Biotechnology 2024;40(1):190-210
The Spt-Ada-Gcn5-acetyltransferase (SAGA) is an ancillary transcription initiation complex which is highly conserved. The ADA1 (alteration/deficiency in activation 1, also called histone H2A functional interactor 1, HFI1) is a subunit in the core module of the SAGA protein complex. ADA1 plays an important role in plant growth and development as well as stress resistance. In this paper, we performed genome-wide identification of banana ADA1 gene family members based on banana genomic data, and analyzed the basic physicochemical properties, evolutionary relationships, selection pressure, promoter cis-acting elements, and its expression profiles under biotic and abiotic stresses. The results showed that there were 10, 6, and 7 family members in Musa acuminata, Musa balbisiana and Musa itinerans. The members were all unstable and hydrophilic proteins, and only contained the conservative SAGA-Tad1 domain. Both MaADA1 and MbADA1 have interactive relationship with Sgf11 (SAGA-associated factor 11) of core module in SAGA. Phylogenetic analysis revealed that banana ADA1 gene family members could be divided into 3 classes. The evolution of ADA1 gene family members was mostly influenced by purifying selection. There were large differences among the gene structure of banana ADA1 gene family members. ADA1 gene family members contained plenty of hormonal elements. MaADA1-1 may play a prominent role in the resistance of banana to cold stress, while MaADA1 may respond to the Panama disease of banana. In conclusion, this study suggested ADA1 gene family members are highly conserved in banana, and may respond to biotic and abiotic stress.
Musa/genetics*
;
Phylogeny
;
Fungal Proteins
;
Cell Nucleus
;
Histones
;
Stress, Physiological/genetics*
9.Neuronal Histone Methyltransferase EZH2 Regulates Neuronal Morphogenesis, Synaptic Plasticity, and Cognitive Behavior in Mice.
Mei ZHANG ; Yong ZHANG ; Qian XU ; Joshua CRAWFORD ; Cheng QIAN ; Guo-Hua WANG ; Jiang QIAN ; Xin-Zhong DONG ; Mikhail V PLETNIKOV ; Chang-Mei LIU ; Feng-Quan ZHOU
Neuroscience Bulletin 2023;39(10):1512-1532
The histone methyltransferase enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2)-mediated trimethylation of histone H3 lysine 27 (H3K27me3) regulates neural stem cell proliferation and fate specificity through silencing different gene sets in the central nervous system. Here, we explored the function of EZH2 in early post-mitotic neurons by generating a neuron-specific Ezh2 conditional knockout mouse line. The results showed that a lack of neuronal EZH2 led to delayed neuronal migration, more complex dendritic arborization, and increased dendritic spine density. Transcriptome analysis revealed that neuronal EZH2-regulated genes are related to neuronal morphogenesis. In particular, the gene encoding p21-activated kinase 3 (Pak3) was identified as a target gene suppressed by EZH2 and H3K27me3, and expression of the dominant negative Pak3 reversed Ezh2 knockout-induced higher dendritic spine density. Finally, the lack of neuronal EZH2 resulted in impaired memory behaviors in adult mice. Our results demonstrated that neuronal EZH2 acts to control multiple steps of neuronal morphogenesis during development, and has long-lasting effects on cognitive function in adult mice.
Animals
;
Mice
;
Enhancer of Zeste Homolog 2 Protein/metabolism*
;
Histone Methyltransferases/metabolism*
;
Histones/genetics*
;
Morphogenesis
;
Neuronal Plasticity
;
Neurons/metabolism*
10.METTL14 is a chromatin regulator independent of its RNA N6-methyladenosine methyltransferase activity.
Xiaoyang DOU ; Lulu HUANG ; Yu XIAO ; Chang LIU ; Yini LI ; Xinning ZHANG ; Lishan YU ; Ran ZHAO ; Lei YANG ; Chuan CHEN ; Xianbin YU ; Boyang GAO ; Meijie QI ; Yawei GAO ; Bin SHEN ; Shuying SUN ; Chuan HE ; Jun LIU
Protein & Cell 2023;14(9):683-697
METTL3 and METTL14 are two components that form the core heterodimer of the main RNA m6A methyltransferase complex (MTC) that installs m6A. Surprisingly, depletion of METTL3 or METTL14 displayed distinct effects on stemness maintenance of mouse embryonic stem cell (mESC). While comparable global hypo-methylation in RNA m6A was observed in Mettl3 or Mettl14 knockout mESCs, respectively. Mettl14 knockout led to a globally decreased nascent RNA synthesis, whereas Mettl3 depletion resulted in transcription upregulation, suggesting that METTL14 might possess an m6A-independent role in gene regulation. We found that METTL14 colocalizes with the repressive H3K27me3 modification. Mechanistically, METTL14, but not METTL3, binds H3K27me3 and recruits KDM6B to induce H3K27me3 demethylation independent of METTL3. Depletion of METTL14 thus led to a global increase in H3K27me3 level along with a global gene suppression. The effects of METTL14 on regulation of H3K27me3 is essential for the transition from self-renewal to differentiation of mESCs. This work reveals a regulatory mechanism on heterochromatin by METTL14 in a manner distinct from METTL3 and independently of m6A, and critically impacts transcriptional regulation, stemness maintenance, and differentiation of mESCs.
Animals
;
Mice
;
Methylation
;
Chromatin
;
Histones/metabolism*
;
RNA, Messenger/genetics*
;
Methyltransferases/metabolism*
;
RNA/metabolism*

Result Analysis
Print
Save
E-mail