1.Effect of Morus alba extract sanggenon C on growth and proliferation of glioblastoma cells.
Wen-Han TANG ; Zhi-Ning ZHANG ; Hua-Rui CAI ; Wei SUN ; He YANG ; Er-Hu ZHAO ; Hong-Juan CUI
China Journal of Chinese Materia Medica 2023;48(1):211-219
Glioblastoma is the most common primary cranial malignancy, and chemotherapy remains an important tool for its treatment. Sanggenon C(San C), a class of natural flavonoids extracted from Morus plants, is a potential antitumor herbal monomer. In this study, the effect of San C on the growth and proliferation of glioblastoma cells was examined by methyl thiazolyl tetrazolium(MTT) assay and 5-bromodeoxyuridinc(BrdU) labeling assay. The effect of San C on the tumor cell cycle was examined by flow cytometry, and the effect of San C on clone formation and self-renewal ability of tumor cells was examined by soft agar assay. Western blot and bioinformatics analysis were used to investigate the mechanism of the antitumor activity of San C. In the presence of San C, the MTT assay showed that San C significantly inhibited the growth and proliferation of tumor cells in a dose and time-dependent manner. BrdU labeling assay showed that San C significantly attenuated the DNA replication activity in the nucleus of tumor cells. Flow cytometry confirmed that San C blocked the cell cycle of tumor cells in G_0/G_1 phase. The soft agar clone formation assay revealed that San C significantly attenuated the clone formation and self-renewal ability of tumor cells. The gene set enrichment analysis(GSEA) implied that San C inhibited the tumor cell division cycle by affecting the myelocytomatosis viral oncogene(MYC) signaling pathway. Western blot assay revealed that San C inhibited the expression of cyclin through the regulation of the MYC signaling pathway by lysine demethylase 4B(KDM4B), which ultimately inhibited the growth and proliferation of glioblastoma cells and self-renewal. In conclusion, San C exhibits the potential antitumor activity by targeting the KDM4B-MYC axis to inhibit glioblastoma cell growth, proliferation, and self-renewal.
Humans
;
Glioblastoma/genetics*
;
Bromodeoxyuridine/therapeutic use*
;
Signal Transduction
;
Proto-Oncogene Proteins c-myc/metabolism*
;
Agar
;
Cell Proliferation
;
Cell Line, Tumor
;
Apoptosis
;
Jumonji Domain-Containing Histone Demethylases/metabolism*
2.Mechanism of Puerariae Lobatae Radix against lung cancer by inhibiting histone demethylase LSD1.
Ting-Ting QIN ; Jin-Lian MA ; Yong YUAN ; Kun DU ; Jin-Xin MIAO ; Xiao-Fang LI ; Hua-Hui ZENG ; Xiang-Xiang WU ; Zhong-Hua LI
China Journal of Chinese Materia Medica 2022;47(20):5574-5583
Histone lysine-specific demethylase 1(LSD1) has become a promising molecular target for lung cancer therapy. Upon the screening platform for LSD1 activity, some Chinese herbal extracts were screened for LSD1 activity inhibition, and the underlying mechanism was preliminarily investigated at both molecular and cellular levels. The results of LSD1 inhibition showed that Puerariae Lobatae Radix extract can effectively reduce LSD1 expression to elevate the expression of H3 K4 me2 and H3 K9 me2 substrates in H1975 and H1299 cells. Furthermore, Puerariae Lobatae Radix was evaluated for its anti-lung cancer activity. It had a potent inhibitory ability against the proliferation and colony formation of both H1975 and H1299 cells. Flow cytometry and DAPI staining assays indicated that Puerariae Lobatae Radix can induce the apoptosis of lung cancer cells. In addition, it can significantly suppress the migration and reverse the epithelial-mesenchymal transition(EMT) process of lung cancer cells by activating E-cadherin and suppressing the expression of N-cadherin, slug and vimentin. To sum up, Puerariae Lobatae Radix displayed a robust inhibitory activity against lung cancer, and the mechanism may be related to the down-regulation of LSD1 expression to induce the cell apoptosis and suppress the cell migration and EMT process. These findings will provide new insights into the action of Puerariae Lobatae Radix as an anti-lung cancer agent and offer new ideas for the study on the anti-cancer action of Chinese medicine based on the epigenetic modification.
Pueraria/chemistry*
;
Histone Demethylases/analysis*
;
Plant Roots/chemistry*
;
Epithelial-Mesenchymal Transition
;
Neoplasms
3.ZNF750 facilitates carcinogenesis via promoting the expression of long non-coding RNA CYTOR and influences pharmacotherapy response in colon adenocarcinoma.
Lu XIA ; Hexin LIN ; Yanming ZHOU ; Jiabian LIAN
Journal of Zhejiang University. Science. B 2022;23(7):587-596
The epidermal cell differentiation regulator zinc finger protein 750 (ZNF750) is a transcription factor containing the Cys2His2 (C2H2) domain, the zinc finger structure of which is located at the N-terminal 25-46 amino acids of ZNF750. It can promote the expression of differentiation-related factors while inhibiting the expression of progenitor cell-related genes. ZNF750 is directly regulated by p63 (encoded by the TP63 gene, belonging to the TP53 superfamily). The Krüppel-like factor 4 (KLF4), repressor element-1 (RE-1)-silencing transcription factor (REST) corepressor 1 (RCOR1), lysine demethylase 1A (KDM1A), and C-terminal-binding protein 1/2 (CTBP1/2) chromatin regulators cooperate with ZNF750 to repress epidermal progenitor genes and activate the expression of epidermal terminal differentiation genes (Sen et al., 2012; Boxer et al., 2014). Besides, ZNF750 and the regulatory network composed of bone morphogenetic protein (BMP) signaling pathway, long non-coding RNAs (lncRNAs) (anti-differentiation non-coding RNA (ANCR) and tissue differentiation-inducing non-protein coding RNA (TINCR)), musculoaponeurotic fibrosarcoma oncogene (MAF)/MAF family B (MAFB), grainy head-like 3 (GRHL3), and positive regulatory domain zinc finger protein 1 (PRDM1) jointly promote epidermal cell differentiation (Sen et al., 2012).
Adenocarcinoma/metabolism*
;
Carcinogenesis/genetics*
;
Colonic Neoplasms/metabolism*
;
Histone Demethylases/metabolism*
;
Humans
;
RNA, Long Noncoding/genetics*
;
Transcription Factors/metabolism*
;
Tumor Suppressor Proteins/metabolism*
4.Histone demethylase JMJD3 downregulation protects against aberrant force-induced osteoarthritis through epigenetic control of NR4A1.
Yu JIN ; Zhen LIU ; Zhenxia LI ; Hairui LI ; Cheng ZHU ; Ruomei LI ; Ting ZHOU ; Bing FANG
International Journal of Oral Science 2022;14(1):34-34
Osteoarthritis (OA) is a prevalent joint disease with no effective treatment strategies. Aberrant mechanical stimuli was demonstrated to be an essential factor for OA pathogenesis. Although multiple studies have detected potential regulatory mechanisms underlying OA and have concentrated on developing novel treatment strategies, the epigenetic control of OA remains unclear. Histone demethylase JMJD3 has been reported to mediate multiple physiological and pathological processes, including cell differentiation, proliferation, autophagy, and apoptosis. However, the regulation of JMJD3 in aberrant force-related OA and its mediatory effect on disease progression are still unknown. In this work, we confirmed the upregulation of JMJD3 in aberrant force-induced cartilage injury in vitro and in vivo. Functionally, inhibition of JMJD3 by its inhibitor, GSK-J4, or downregulation of JMJD3 by adenovirus infection of sh-JMJD3 could alleviate the aberrant force-induced chondrocyte injury. Mechanistic investigation illustrated that aberrant force induces JMJD3 expression and then demethylates H3K27me3 at the NR4A1 promoter to promote its expression. Further experiments indicated that NR4A1 can regulate chondrocyte apoptosis, cartilage degeneration, extracellular matrix degradation, and inflammatory responses. In vivo, anterior cruciate ligament transection (ACLT) was performed to construct an OA model, and the therapeutic effect of GSK-J4 was validated. More importantly, we adopted a peptide-siRNA nanoplatform to deliver si-JMJD3 into articular cartilage, and the severity of joint degeneration was remarkably mitigated. Taken together, our findings demonstrated that JMJD3 is flow-responsive and epigenetically regulates OA progression. Our work provides evidences for JMJD3 inhibition as an innovative epigenetic therapy approach for joint diseases by utilizing p5RHH-siRNA nanocomplexes.
Cartilage, Articular/pathology*
;
Chondrocytes/metabolism*
;
Down-Regulation
;
Epigenesis, Genetic
;
Humans
;
Jumonji Domain-Containing Histone Demethylases/metabolism*
;
Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism*
;
Osteoarthritis/pathology*
;
RNA, Small Interfering/pharmacology*
5.Loss of KDM4B impairs osteogenic differentiation of OMSCs and promotes oral bone aging.
Peng DENG ; Insoon CHANG ; Jiongke WANG ; Amr A BADRELDIN ; Xiyao LI ; Bo YU ; Cun-Yu WANG
International Journal of Oral Science 2022;14(1):24-24
Aging of craniofacial skeleton significantly impairs the repair and regeneration of trauma-induced bony defects, and complicates dental treatment outcomes. Age-related alveolar bone loss could be attributed to decreased progenitor pool through senescence, imbalance in bone metabolism and bone-fat ratio. Mesenchymal stem cells isolated from oral bones (OMSCs) have distinct lineage propensities and characteristics compared to MSCs from long bones, and are more suited for craniofacial regeneration. However, the effect of epigenetic modifications regulating OMSC differentiation and senescence in aging has not yet been investigated. In this study, we found that the histone demethylase KDM4B plays an essential role in regulating the osteogenesis of OMSCs and oral bone aging. Loss of KDM4B in OMSCs leads to inhibition of osteogenesis. Moreover, KDM4B loss promoted adipogenesis and OMSC senescence which further impairs bone-fat balance in the mandible. Together, our data suggest that KDM4B may underpin the molecular mechanisms of OMSC fate determination and alveolar bone homeostasis in skeletal aging, and present as a promising therapeutic target for addressing craniofacial skeletal defects associated with age-related deteriorations.
Aging
;
Cell Differentiation
;
Facial Bones/physiology*
;
Humans
;
Jumonji Domain-Containing Histone Demethylases/genetics*
;
Mesenchymal Stem Cells/cytology*
;
Osteogenesis
;
Osteoporosis
6.Promising natural lysine specific demethylase 1 inhibitors for cancer treatment: advances and outlooks.
Zhong-Rui LI ; Meng-Zhen GU ; Xiao XU ; Jing-Han ZHANG ; Hai-Li ZHANG ; Chao HAN
Chinese Journal of Natural Medicines (English Ed.) 2022;20(4):241-257
Lysine specific demethylase 1 (LSD1), a transcriptional corepressor or coactivator that serves as a demethylase of histone 3 lysine 4 and 9, has become a potential therapeutic target for cancer therapy. LSD1 mediates many cellular signaling pathways and regulates cancer cell proliferation, invasion, migration, and differentiation. Recent research has focused on the exploration of its pharmacological inhibitors. Natural products are a major source of compounds with abundant scaffold diversity and structural complexity, which have made a major contribution to drug discovery, particularly anticancer agents. In this review, we briefly highlight recent advances in natural LSD1 inhibitors over the past decade. We present a comprehensive review on their discovery and identification process, natural plant sources, chemical structures, anticancer effects, and structure-activity relationships, and finally provide our perspective on the development of novel natural LSD1 inhibitors for cancer therapy.
Antineoplastic Agents/therapeutic use*
;
Enzyme Inhibitors/therapeutic use*
;
Histone Demethylases/metabolism*
;
Humans
;
Lysine/therapeutic use*
;
Neoplasms/drug therapy*
7.Treatment and genetic analysis of a child with Kabuki syndrome type 2 and secondary pulmonary infection due to a de novo variant of KDM6A gene.
Wei CHEN ; Weiwei SUN ; Wei SHEN ; Haoquan ZHOU
Chinese Journal of Medical Genetics 2021;38(7):678-680
OBJECTIVE:
To explore the genetic basis of a child with recurrent infection, multiple malformation and dysmorphism.
METHODS:
The child and his parents were subjected to trio whole exome sequencing.
RESULTS:
The child had a complaint of fever and cough, with long and thin eye fissures and long eyelashes. Genetic testing revealed that the child has carried a non-triplet deletion of the KDM6A gene, which was unreported previously. The variant resulted in frameshift and premature termination of the translation. His parents were both of the wild type for the locus. After antibiotic and immunoglobulin treatment, the severe secondary pneumonia caused by immunodeficiency has improved.
CONCLUSION
With combined laboratory test, imaging examination and genetic testing, the child was ultimately diagnosed with Kabuki syndrome type 2. The characteristics of immunodeficiency of Kabuki syndrome may render conventional antibiotic treatment ineffective, which deserves clinical attention.
Abnormalities, Multiple
;
Child
;
DNA-Binding Proteins/genetics*
;
Face/abnormalities*
;
Genetic Testing
;
Hematologic Diseases
;
Histone Demethylases/genetics*
;
Humans
;
Neoplasm Proteins/genetics*
;
Nuclear Proteins/genetics*
;
Phenotype
;
Pneumonia
;
Vestibular Diseases
8.Pioneer of prostate cancer: past, present and the future of FOXA1.
Mona TENG ; Stanley ZHOU ; Changmeng CAI ; Mathieu LUPIEN ; Housheng Hansen HE
Protein & Cell 2021;12(1):29-38
Prostate cancer is the most commonly diagnosed non-cutaneous cancers in North American men. While androgen deprivation has remained as the cornerstone of prostate cancer treatment, resistance ensues leading to lethal disease. Forkhead box A1 (FOXA1) encodes a pioneer factor that induces open chromatin conformation to allow the binding of other transcription factors. Through direct interactions with the Androgen Receptor (AR), FOXA1 helps to shape AR signaling that drives the growth and survival of normal prostate and prostate cancer cells. FOXA1 also possesses an AR-independent role of regulating epithelial-to-mesenchymal transition (EMT). In prostate cancer, mutations converge onto the coding sequence and cis-regulatory elements (CREs) of FOXA1, leading to functional alterations. In addition, FOXA1 activity in prostate cancer can be modulated post-translationally through various mechanisms such as LSD1-mediated protein demethylation. In this review, we describe the latest discoveries related to the function and regulation of FOXA1 in prostate cancer, pointing to their relevance to guide future clinical interventions.
Amino Acid Sequence
;
Epigenesis, Genetic
;
Epithelial-Mesenchymal Transition
;
Gene Expression Regulation, Neoplastic
;
Hepatocyte Nuclear Factor 3-alpha/metabolism*
;
Histone Demethylases/metabolism*
;
Histones/metabolism*
;
Humans
;
Male
;
Mutation
;
Prostate/pathology*
;
Prostatic Neoplasms/pathology*
;
Protein Binding
;
Protein Processing, Post-Translational
;
Receptors, Androgen/metabolism*
;
Signal Transduction
;
Transcription, Genetic
9.Prenatal diagnosis of a fetus with cleft lip and palate by using chromosomal microarray analysis.
Chao HUANG ; Xiaoyan SONG ; Qin ZHANG ; Minjuan LIU ; Jun MAO ; Jingjing XIANG ; Yinghua LIU ; Hong LI ; Ting WANG
Chinese Journal of Medical Genetics 2020;37(4):471-474
OBJECTIVE:
To explore the genetic basis for a fetus with cleft lip and palate.
METHODS:
Copy number variations (CNVs) in the fetus and his parents were detected with chromosomal microarray analysis (CMA).
RESULTS:
As revealed by the CMA assay, the fetus has carried a 228 kb deletion in Xp11.22 region and a 721 kb duplication in 9p21.1. Both CNVs were inherited from the parents. The CNV in Xp11.22 was predicted to be pathogenic by involving the PHF8 gene, whilst the CNV in 9p21.1 was predicted to be benign.
CONCLUSION
Deletion of the Xp11.22 region probably underlies the cleft lip and palate in this fetus.
Chromosome Deletion
;
Chromosomes, Human, X
;
genetics
;
Cleft Lip
;
diagnosis
;
genetics
;
Cleft Palate
;
diagnosis
;
genetics
;
DNA Copy Number Variations
;
Female
;
Fetus
;
Histone Demethylases
;
Humans
;
Microarray Analysis
;
methods
;
Pregnancy
;
Prenatal Diagnosis
;
Transcription Factors
10.Association of JMJD3, MMP-2 and VEGF expressions with clinicopathological features of invasive ductal breast carcinoma.
Xiaoyan XU ; Jianjun WANG ; Chen YAN ; Yingli MEN ; Huang JIANG ; Huijuan FANG ; Xianwei XU ; Jinhua YANG
Journal of Southern Medical University 2020;40(11):1593-1600
OBJECTIVE:
To examine the expressions of JMJD3, matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) in invasive ductal breast carcinoma, their association with the clinicopathological features of the patients and the effect of JMJD3 overexpression on proliferation and MMP-2 and VEGF expressions in breast cancer cells.
METHODS:
The protein and mRNA expressions of JMJD3, MMP-2, and VEGF in invasive ductal breast carcinoma and paired adjacent tissues were detected by immunohistochemistry and RT-PCR, respectively, and their correlation with the clinicopathological characteristics of the patients was analyzed. Kaplan-Meier survival analysis was used to evaluate the correlation of JMJD3, MMP-2 and VEGF expression levels with the survival of the patients. In breast cancer MDA-MB-231 cells transfected with a JMJD3-expression plasmid, the expression of Ki67 was examined immunohistochemically, the cell proliferation was assessed with CCK8 assay, and the mRNA expressions of MMP-2 and VEGF were detected with RT-PCR.
RESULTS:
Breast cancer tissues had significantly lower JMJD3 expression and higher MMP-2 and VEGF expressions at both the mRNA and protein levels than the adjacent tissue (
CONCLUSIONS
The expressions of JMJD3, MMP-2 and VEGF in invasive ductal breast carcinoma are closely correlated to tumor proliferation, invasion, metastasis and prognosis and can be used for prognostic evaluation of breast cancer.
Breast Neoplasms/genetics*
;
Carcinoma, Ductal, Breast/genetics*
;
Humans
;
Jumonji Domain-Containing Histone Demethylases
;
Lymphatic Metastasis
;
Matrix Metalloproteinase 2
;
Prognosis
;
Vascular Endothelial Growth Factor A

Result Analysis
Print
Save
E-mail