1.Lysine-specific demethylase 1 controls key OSCC preneoplasia inducer STAT3 through CDK7 phosphorylation during oncogenic progression and immunosuppression.
Amit Kumar CHAKRABORTY ; Rajnikant Dilip RAUT ; Kisa IQBAL ; Chumki CHOUDHURY ; Thabet ALHOUSAMI ; Sami CHOGLE ; Alexa S ACOSTA ; Lana FAGMAN ; Kelly DEABOLD ; Marilia TAKADA ; Bikash SAHAY ; Vikas KUMAR ; Manish V BAIS
International Journal of Oral Science 2025;17(1):31-31
Oral squamous cell carcinoma (OSCC) progresses from preneoplastic precursors via genetic and epigenetic alterations. Previous studies have focused on the treatment of terminally developed OSCC. However, the role of epigenetic regulators as therapeutic targets during the transition from preneoplastic precursors to OSCC has not been well studied. Our study identified lysine-specific demethylase 1 (LSD1) as a crucial promoter of OSCC, demonstrating that its knockout or pharmacological inhibition in mice reversed OSCC preneoplasia. LSD1 inhibition by SP2509 disrupted cell cycle, reduced immunosuppression, and enhanced CD4+ and CD8+ T-cell infiltration. In a feline model of spontaneous OSCC, a clinical LSD1 inhibitor (Seclidemstat or SP2577) was found to be safe and effectively inhibit the STAT3 network. Mechanistic studies revealed that LSD1 drives OSCC progression through STAT3 signaling, which is regulated by phosphorylation of the cell cycle mediator CDK7 and immunosuppressive CTLA4. Notably, LSD1 inhibition reduced the phosphorylation of CDK7 at Tyr170 and eIF4B at Ser422, offering insights into a novel mechanism by which LSD1 regulates the preneoplastic-to-OSCC transition. This study provides a deeper understanding of OSCC progression and highlights LSD1 as a potential therapeutic target for controlling OSCC progression from preneoplastic lesions.
STAT3 Transcription Factor/metabolism*
;
Animals
;
Histone Demethylases/genetics*
;
Phosphorylation
;
Mouth Neoplasms/immunology*
;
Mice
;
Carcinoma, Squamous Cell/immunology*
;
Disease Progression
;
Cyclin-Dependent Kinase-Activating Kinase
;
Precancerous Conditions/metabolism*
;
Humans
;
Cyclin-Dependent Kinases/metabolism*
;
Disease Models, Animal
2.JMJD1C forms condensate to facilitate a RUNX1-dependent gene expression program shared by multiple types of AML cells.
Qian CHEN ; Saisai WANG ; Juqing ZHANG ; Min XIE ; Bin LU ; Jie HE ; Zhuoran ZHEN ; Jing LI ; Jiajun ZHU ; Rong LI ; Pilong LI ; Haifeng WANG ; Christopher R VAKOC ; Robert G ROEDER ; Mo CHEN
Protein & Cell 2025;16(5):338-364
JMJD1C (Jumonji Domain Containing 1C), a member of the lysine demethylase 3 (KDM3) family, is universally required for the survival of several types of acute myeloid leukemia (AML) cells with different genetic mutations, representing a therapeutic opportunity with broad application. Yet how JMJD1C regulates the leukemic programs of various AML cells is largely unexplored. Here we show that JMJD1C interacts with the master hematopoietic transcription factor RUNX1, which thereby recruits JMJD1C to the genome to facilitate a RUNX1-driven transcriptional program that supports leukemic cell survival. The underlying mechanism hinges on the long N-terminal disordered region of JMJD1C, which harbors two inseparable abilities: condensate formation and direct interaction with RUNX1. This dual capability of JMJD1C may influence enhancer-promoter contacts crucial for the expression of key leukemic genes regulated by RUNX1. Our findings demonstrate a previously unappreciated role for the non-catalytic function of JMJD1C in transcriptional regulation, underlying a mechanism shared by different types of leukemias.
Core Binding Factor Alpha 2 Subunit/genetics*
;
Humans
;
Leukemia, Myeloid, Acute/pathology*
;
Jumonji Domain-Containing Histone Demethylases/chemistry*
;
Gene Expression Regulation, Leukemic
;
Oxidoreductases, N-Demethylating/genetics*
;
Cell Line, Tumor
3.Effect of Morus alba extract sanggenon C on growth and proliferation of glioblastoma cells.
Wen-Han TANG ; Zhi-Ning ZHANG ; Hua-Rui CAI ; Wei SUN ; He YANG ; Er-Hu ZHAO ; Hong-Juan CUI
China Journal of Chinese Materia Medica 2023;48(1):211-219
Glioblastoma is the most common primary cranial malignancy, and chemotherapy remains an important tool for its treatment. Sanggenon C(San C), a class of natural flavonoids extracted from Morus plants, is a potential antitumor herbal monomer. In this study, the effect of San C on the growth and proliferation of glioblastoma cells was examined by methyl thiazolyl tetrazolium(MTT) assay and 5-bromodeoxyuridinc(BrdU) labeling assay. The effect of San C on the tumor cell cycle was examined by flow cytometry, and the effect of San C on clone formation and self-renewal ability of tumor cells was examined by soft agar assay. Western blot and bioinformatics analysis were used to investigate the mechanism of the antitumor activity of San C. In the presence of San C, the MTT assay showed that San C significantly inhibited the growth and proliferation of tumor cells in a dose and time-dependent manner. BrdU labeling assay showed that San C significantly attenuated the DNA replication activity in the nucleus of tumor cells. Flow cytometry confirmed that San C blocked the cell cycle of tumor cells in G_0/G_1 phase. The soft agar clone formation assay revealed that San C significantly attenuated the clone formation and self-renewal ability of tumor cells. The gene set enrichment analysis(GSEA) implied that San C inhibited the tumor cell division cycle by affecting the myelocytomatosis viral oncogene(MYC) signaling pathway. Western blot assay revealed that San C inhibited the expression of cyclin through the regulation of the MYC signaling pathway by lysine demethylase 4B(KDM4B), which ultimately inhibited the growth and proliferation of glioblastoma cells and self-renewal. In conclusion, San C exhibits the potential antitumor activity by targeting the KDM4B-MYC axis to inhibit glioblastoma cell growth, proliferation, and self-renewal.
Humans
;
Glioblastoma/genetics*
;
Bromodeoxyuridine/therapeutic use*
;
Signal Transduction
;
Proto-Oncogene Proteins c-myc/metabolism*
;
Agar
;
Cell Proliferation
;
Cell Line, Tumor
;
Apoptosis
;
Jumonji Domain-Containing Histone Demethylases/metabolism*
4.Loss of KDM4B impairs osteogenic differentiation of OMSCs and promotes oral bone aging.
Peng DENG ; Insoon CHANG ; Jiongke WANG ; Amr A BADRELDIN ; Xiyao LI ; Bo YU ; Cun-Yu WANG
International Journal of Oral Science 2022;14(1):24-24
Aging of craniofacial skeleton significantly impairs the repair and regeneration of trauma-induced bony defects, and complicates dental treatment outcomes. Age-related alveolar bone loss could be attributed to decreased progenitor pool through senescence, imbalance in bone metabolism and bone-fat ratio. Mesenchymal stem cells isolated from oral bones (OMSCs) have distinct lineage propensities and characteristics compared to MSCs from long bones, and are more suited for craniofacial regeneration. However, the effect of epigenetic modifications regulating OMSC differentiation and senescence in aging has not yet been investigated. In this study, we found that the histone demethylase KDM4B plays an essential role in regulating the osteogenesis of OMSCs and oral bone aging. Loss of KDM4B in OMSCs leads to inhibition of osteogenesis. Moreover, KDM4B loss promoted adipogenesis and OMSC senescence which further impairs bone-fat balance in the mandible. Together, our data suggest that KDM4B may underpin the molecular mechanisms of OMSC fate determination and alveolar bone homeostasis in skeletal aging, and present as a promising therapeutic target for addressing craniofacial skeletal defects associated with age-related deteriorations.
Aging
;
Cell Differentiation
;
Facial Bones/physiology*
;
Humans
;
Jumonji Domain-Containing Histone Demethylases/genetics*
;
Mesenchymal Stem Cells/cytology*
;
Osteogenesis
;
Osteoporosis
5.ZNF750 facilitates carcinogenesis via promoting the expression of long non-coding RNA CYTOR and influences pharmacotherapy response in colon adenocarcinoma.
Lu XIA ; Hexin LIN ; Yanming ZHOU ; Jiabian LIAN
Journal of Zhejiang University. Science. B 2022;23(7):587-596
The epidermal cell differentiation regulator zinc finger protein 750 (ZNF750) is a transcription factor containing the Cys2His2 (C2H2) domain, the zinc finger structure of which is located at the N-terminal 25-46 amino acids of ZNF750. It can promote the expression of differentiation-related factors while inhibiting the expression of progenitor cell-related genes. ZNF750 is directly regulated by p63 (encoded by the TP63 gene, belonging to the TP53 superfamily). The Krüppel-like factor 4 (KLF4), repressor element-1 (RE-1)-silencing transcription factor (REST) corepressor 1 (RCOR1), lysine demethylase 1A (KDM1A), and C-terminal-binding protein 1/2 (CTBP1/2) chromatin regulators cooperate with ZNF750 to repress epidermal progenitor genes and activate the expression of epidermal terminal differentiation genes (Sen et al., 2012; Boxer et al., 2014). Besides, ZNF750 and the regulatory network composed of bone morphogenetic protein (BMP) signaling pathway, long non-coding RNAs (lncRNAs) (anti-differentiation non-coding RNA (ANCR) and tissue differentiation-inducing non-protein coding RNA (TINCR)), musculoaponeurotic fibrosarcoma oncogene (MAF)/MAF family B (MAFB), grainy head-like 3 (GRHL3), and positive regulatory domain zinc finger protein 1 (PRDM1) jointly promote epidermal cell differentiation (Sen et al., 2012).
Adenocarcinoma/metabolism*
;
Carcinogenesis/genetics*
;
Colonic Neoplasms/metabolism*
;
Histone Demethylases/metabolism*
;
Humans
;
RNA, Long Noncoding/genetics*
;
Transcription Factors/metabolism*
;
Tumor Suppressor Proteins/metabolism*
6.Treatment and genetic analysis of a child with Kabuki syndrome type 2 and secondary pulmonary infection due to a de novo variant of KDM6A gene.
Wei CHEN ; Weiwei SUN ; Wei SHEN ; Haoquan ZHOU
Chinese Journal of Medical Genetics 2021;38(7):678-680
OBJECTIVE:
To explore the genetic basis of a child with recurrent infection, multiple malformation and dysmorphism.
METHODS:
The child and his parents were subjected to trio whole exome sequencing.
RESULTS:
The child had a complaint of fever and cough, with long and thin eye fissures and long eyelashes. Genetic testing revealed that the child has carried a non-triplet deletion of the KDM6A gene, which was unreported previously. The variant resulted in frameshift and premature termination of the translation. His parents were both of the wild type for the locus. After antibiotic and immunoglobulin treatment, the severe secondary pneumonia caused by immunodeficiency has improved.
CONCLUSION
With combined laboratory test, imaging examination and genetic testing, the child was ultimately diagnosed with Kabuki syndrome type 2. The characteristics of immunodeficiency of Kabuki syndrome may render conventional antibiotic treatment ineffective, which deserves clinical attention.
Abnormalities, Multiple
;
Child
;
DNA-Binding Proteins/genetics*
;
Face/abnormalities*
;
Genetic Testing
;
Hematologic Diseases
;
Histone Demethylases/genetics*
;
Humans
;
Neoplasm Proteins/genetics*
;
Nuclear Proteins/genetics*
;
Phenotype
;
Pneumonia
;
Vestibular Diseases
7.Clinical features and gene variant of a pedigree affected with X-linked recessive mental retardation Claes-Jensen type.
Ning DING ; Pingping ZHANG ; Yingying MAO ; Shuo FENG ; Zhijie GAO ; Qian CHEN ; Xue ZHANG
Chinese Journal of Medical Genetics 2020;37(12):1352-1355
OBJECTIVE:
To explore the genetic basis for a pedigree affected with X-linked recessive mental retardation Claes-Jensen type.
METHODS:
Genomic DNA was extracted from peripheral blood samples of the patient, his parents (phenotypically normal) and two elder brothers with similar clinical manifestations. Whole exome sequencing was carried out for the proband, and the result was verified by Sanger sequencing.
RESULTS:
The proband was found to harbor a hemizygous c.1565C>T missense variant in exon 11 of the KDM5C gene. The transition has resulted in replacement of serine by phenylalanine at position 522 (p.Ser522Phe). Sanger sequencing showed that the patient's two elder brothers and mother carried the same variant, which was predicted to be probably damaging by SIFT, PolyPhen2 and Mutation_Taster. The three affected brothers presented with similar clinical phenotypes characterized by mental retardation, speech delay, behavioral problem, self-limited epilepsy responsible to medication, short stature and microcephaly. The mother only had mild cognitive impairment and learning disability. The same variant was not found in their father and was unreported previously.
CONCLUSION
The c.1565C>T (p.Ser522Phe) of the KDM5C gene probably underlay the X-linked recessive mental retardation Claes-Jensen type in this pedigree.
Aged
;
Female
;
Histone Demethylases/genetics*
;
Humans
;
Male
;
Mental Retardation, X-Linked/pathology*
;
Mutation, Missense/genetics*
;
Pedigree
;
Phenotype
;
Whole Exome Sequencing
8.Association of JMJD3, MMP-2 and VEGF expressions with clinicopathological features of invasive ductal breast carcinoma.
Xiaoyan XU ; Jianjun WANG ; Chen YAN ; Yingli MEN ; Huang JIANG ; Huijuan FANG ; Xianwei XU ; Jinhua YANG
Journal of Southern Medical University 2020;40(11):1593-1600
OBJECTIVE:
To examine the expressions of JMJD3, matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) in invasive ductal breast carcinoma, their association with the clinicopathological features of the patients and the effect of JMJD3 overexpression on proliferation and MMP-2 and VEGF expressions in breast cancer cells.
METHODS:
The protein and mRNA expressions of JMJD3, MMP-2, and VEGF in invasive ductal breast carcinoma and paired adjacent tissues were detected by immunohistochemistry and RT-PCR, respectively, and their correlation with the clinicopathological characteristics of the patients was analyzed. Kaplan-Meier survival analysis was used to evaluate the correlation of JMJD3, MMP-2 and VEGF expression levels with the survival of the patients. In breast cancer MDA-MB-231 cells transfected with a JMJD3-expression plasmid, the expression of Ki67 was examined immunohistochemically, the cell proliferation was assessed with CCK8 assay, and the mRNA expressions of MMP-2 and VEGF were detected with RT-PCR.
RESULTS:
Breast cancer tissues had significantly lower JMJD3 expression and higher MMP-2 and VEGF expressions at both the mRNA and protein levels than the adjacent tissue (
CONCLUSIONS
The expressions of JMJD3, MMP-2 and VEGF in invasive ductal breast carcinoma are closely correlated to tumor proliferation, invasion, metastasis and prognosis and can be used for prognostic evaluation of breast cancer.
Breast Neoplasms/genetics*
;
Carcinoma, Ductal, Breast/genetics*
;
Humans
;
Jumonji Domain-Containing Histone Demethylases
;
Lymphatic Metastasis
;
Matrix Metalloproteinase 2
;
Prognosis
;
Vascular Endothelial Growth Factor A
9.Prenatal diagnosis of a fetus with cleft lip and palate by using chromosomal microarray analysis.
Chao HUANG ; Xiaoyan SONG ; Qin ZHANG ; Minjuan LIU ; Jun MAO ; Jingjing XIANG ; Yinghua LIU ; Hong LI ; Ting WANG
Chinese Journal of Medical Genetics 2020;37(4):471-474
OBJECTIVE:
To explore the genetic basis for a fetus with cleft lip and palate.
METHODS:
Copy number variations (CNVs) in the fetus and his parents were detected with chromosomal microarray analysis (CMA).
RESULTS:
As revealed by the CMA assay, the fetus has carried a 228 kb deletion in Xp11.22 region and a 721 kb duplication in 9p21.1. Both CNVs were inherited from the parents. The CNV in Xp11.22 was predicted to be pathogenic by involving the PHF8 gene, whilst the CNV in 9p21.1 was predicted to be benign.
CONCLUSION
Deletion of the Xp11.22 region probably underlies the cleft lip and palate in this fetus.
Chromosome Deletion
;
Chromosomes, Human, X
;
genetics
;
Cleft Lip
;
diagnosis
;
genetics
;
Cleft Palate
;
diagnosis
;
genetics
;
DNA Copy Number Variations
;
Female
;
Fetus
;
Histone Demethylases
;
Humans
;
Microarray Analysis
;
methods
;
Pregnancy
;
Prenatal Diagnosis
;
Transcription Factors
10.Antiproliferative effect of silencing LSD1 gene on Jurkat cell line and its mechanism.
Shiwei HAN ; Yiqun HUANG ; Ruiji ZHENG
Chinese Journal of Hematology 2016;37(1):56-60
OBJECTIVETo investigate the effect of silencing LSD1 gene by RNA interference on the proliferation, apoptosis on human lymphocytic leukemia Jurkat cell line and its mechanism.
METHODSThe hairpin- like oligonucleotide sequences targeting LSD1 gene was transfected into Jurkat cells by lipofectamine(TM) 2000. The LSD1 mRNA and protein were detected by RQ- PCR and Western blot. Cell growth was determined by MTT. Cell apoptosis was analyzed by flow cytometry. The expression of Bcl-2, Bax, procaspase- 3, and histone H3K4me, H3K4me2, H3K4me3, Act- H3, H3K9me were detected by Western blot.
RESULTSLSD1 mRNA was markedly suppressed by the shRNA targeting LSD1. LSD1 shRNA suppressed the proliferation and induced cells apoptosis of Jurkat cells. The cell apoptotic rate was (41.34±3.58)%, (3.45±1.54)%, (1.76±0.52)% in LSD1 shRNA, Neg-shRNA and Blank respectively, the difference among them was statistically significant (P<0.05). LSD1 shRNA down- regulated the expressions of Bcl- 2 and procaspase- 3, and up- regulated the expression of Bax. The methylation of H3K4me1, me2 and acetylation of Act- H3 improved without change of the methylation of H3K4me3.
CONCLUSIONSDeplete of LSD1 gene maybe through modifying the methylation of histone H3K4 to promote the cell apoptosis and inhibit cell growth in Jurkat cell line.
Acetylation ; Apoptosis ; Caspase 3 ; metabolism ; Cell Cycle ; Cell Line, Tumor ; Cell Proliferation ; Down-Regulation ; Histone Demethylases ; genetics ; Histones ; metabolism ; Humans ; Jurkat Cells ; Methylation ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; RNA Interference ; RNA, Messenger ; RNA, Small Interfering ; Transfection

Result Analysis
Print
Save
E-mail