1.HDAC2-mediated H3K27 acetylation promotes the proliferation and migration of hepatocellular carcinoma cells.
Shaohai TANG ; Baoming YANG ; Jiankun LI ; Lili ZHAO ; Yifan WANG ; Shunxiang WANG
Journal of Peking University(Health Sciences) 2025;57(5):884-894
OBJECTIVE:
To explore the specific mechanism of histone deacetylase 2 (HDAC2) mediated histone H3 lysine 27 acetylation (H3K27ac) modification in promoting the proliferation and migration of hepatocellular carcinoma cells.
METHODS:
Samples of 40 cases of hepatocellular carcinoma and paracancerous tissues resected from January 2021 to January 2023 were collected. The expressions of HDAC2 and H3K27ac in hepatocellular carcinoma, paracancerous tissues and cell lines were detected by immunohistochemistry and Western blotting. The correlation between the expression levels of HDAC2 and H3K27ac and the relationship between HDAC2 expression and clinicopathological characteristics of patients with hepatocellular carcinoma were analyzed. The proliferation, migration and invasion of Hep3B and HepG2 cells were determined by MTS, clone formation, scratch and Transwell experiments. The acetylation of H3K27 mediated by HDAC2 was verified by Western blotting, real-time fluorescence quantitative PCR (qRT-PCR) and chromatin immunoprecipitation high-throughput sequencing (ChIP-seq). In vivo xenotransplantation experiment, the tumorigenicity of cells in each group was measured, and the expression of proteins related to phosphoinositide 3-kinases/phosphatase and tensin homolog deleted on chromosome ten/protein kinase B/mammalian target of rapamycin (PI3K/PTEN/AKT/mTOR) signal pathway was detected.
RESULTS:
High expression of HDAC2 and low expression of H3K27ac were found in hepatocellular carcinoma tissues and cell lines (P < 0.05), and there was a negative correlation between them (r=-0.477, P=0.002). The expression of HDAC2 was related to tumor size, hepatitis B virus infection, TNM stage and portal vein tumor thrombus (P < 0.05). Compared with the sh-NC group of Hep3B and HepG2 cells, the proliferation, clone formation, migration and invasion ability of sh-HDAC2 group were decreased (P < 0.05). Compared with the Empty group, the HDAC2 group exhibited increased expression levels and activity of HDAC2, as well as enhanced cell proliferation, clone formation, migration, invasion ability, tumor volume and mass in vivo, and elevated expression levels of p-PI3K, p-AKT, and p-mTOR (P < 0.05). Conversely, the enrichment and expression levels of H3K27ac, along with the expression level of PTEN, were decreased (P < 0.05). In the iHDAC2 group, the expression levels and activity of HDAC2, as well as the proliferation, clone formation, migration, invasion ability, tumor volume and mass in vivo, and expression levels of p-PI3K, p-AKT, and p-mTOR were reduced (P < 0.05). Additionally, the expression levels of H3K27ac and PTEN were increased (P < 0.05). To validate the involvement of the PI3K/PTEN/AKT/mTOR signaling pathway in HDAC2-mediated regulation of malignant behaviors in liver cancer cells through H3K27ac, the PI3K activator 740Y-P was introduced. Compared with the iHDAC2 group, the iHDAC2+740Y-P group exhibited increased proliferation, clone formation, migration, invasion ability, tumor volume and mass in vivo, and elevated expression levels of p-PI3K, p-AKT, and p-mTOR (P < 0.05). Conversely, the expression level of PTEN was decreased (P < 0.05).
CONCLUSION
HDAC2 initiates PI3K/PTEN/AKT/mTOR signal pathway by mediating H3K27 acetylation, which promotes the occurrence and development of hepatocellular carcinoma.
Humans
;
Carcinoma, Hepatocellular/metabolism*
;
Liver Neoplasms/metabolism*
;
Histone Deacetylase 2/physiology*
;
Cell Proliferation
;
Acetylation
;
Cell Movement
;
Histones/metabolism*
;
Animals
;
Hep G2 Cells
;
Male
;
Female
;
Mice
;
Cell Line, Tumor
;
Signal Transduction
;
Mice, Nude
;
PTEN Phosphohydrolase/metabolism*
;
Lysine/metabolism*
;
Middle Aged
2.Histone deacetylase inhibitor promotes differentiation of embryonic stem cells into neural cells in adherent monoculture.
Xing YAO ; Jia-rong ZHANG ; Hua-rong HUANG ; Li-cheng DAI ; Qing-jun LIU ; Ming ZHANG
Chinese Medical Journal 2010;123(6):734-738
BACKGROUNDEmbryonic stem (ES) cells poss unlimited self-renewal capacity and the ability to differentiate into cell of all three germ layers in vitro. Induced differentiation of ES cells to neural lineage cells has great potential in basic study of neurogenesis and regeneration therapy of neurodegenerative diseases. Histone deacetylase (HDAC) inhibitors enhance histone acetylation so that globularly activate gene expression and may initiate multilineage differentiation. In this study, we aimed to develop a method to induce the differentiation of ES cells to neural cells combining HDAC inhibition and neural cell selection.
METHODSIn this study, we used HDAC inhibitor sodium butyrate (NaB) to induce the differentiation of mouse embryonic stem cells to neural cells through monolayer culture. After differentiation initiation by histone deacetylase inhibitor sodium butyrate, neural cells were induced and selected with a serum free culture system.
RESULTSHomogeneous neurons without glial cells demonstrated by molecular marker expression were differentiated with the method. The resultant neurons were excitable.
CONCLUSIONThe method combined differentiation induction effect of HDAC inhibitors and selective culture system to derive neural cells from ES cells, and implied the involvement of epigenetic regulation in neural differentiation.
Animals ; Butyrates ; pharmacology ; Cell Adhesion ; Cell Cycle ; drug effects ; Cell Differentiation ; drug effects ; Cells, Cultured ; Embryonic Stem Cells ; cytology ; drug effects ; Fibroblast Growth Factor 2 ; pharmacology ; Histone Deacetylase Inhibitors ; pharmacology ; Mice ; Neurons ; cytology ; physiology
3.Histone deacetylase inhibitor trichostatin A induced caspase-independent apoptosis in human gastric cancer cell.
Zhi-qun WU ; Rui ZHANG ; Connie CHAO ; Ji-feng ZHANG ; Yuan-qiang ZHANG
Chinese Medical Journal 2007;120(23):2112-2118
BACKGROUNDHistone deacetylase inhibitors (HDACIs) have been reported to induce apoptosis in cancer cells. The effects of trichostatin A (TSA) on gastric cancer cells have not been well characterized. This study was aimed to explore the effects and mechanisms of TSA on human gastric cancer SGC-7901 cells.
METHODSThe cells were treated with TSA and analyzed by cell proliferation assay, Western blot, TUNEL assay, flow cytometry by fluorescein isothiocyanate (FITC) conjugated with Annexin V and PI staining, immunofluorescence analysis, analysis of subcellular fractionation, gene chips and real time polymerase chain reaction (PCR).
RESULTSTSA could inhibit cell growth and induced apoptosis in gastric cancer SGC-7901 cells through the regulation of apoptosis-related genes, such as Bcl-2, Bax and survivin. Further study indicated that the pan-caspase inhibitor z-VAD-fmk did not inhibit the apoptosis induced by TSA, and we did not observe the cleavage of poly ADP ribose polymerase (PARP) after TSA treatment too. In addition, apoptosis inducing factor (AIF) and EndoG were found to translocate from mitochondria to nucleus in the immunofluorescence assay and the Western analysis of subcellular fractionation confirmed the result of immunofluorescence assay.
CONCLUSIONSThe apoptosis induced by TSA in gastric cancer SGC-7901 cells involves a caspase-independent pathway.
Apoptosis ; drug effects ; Caspases ; physiology ; Cell Line, Tumor ; Enzyme Inhibitors ; pharmacology ; Gene Expression Profiling ; Histone Deacetylase Inhibitors ; Humans ; Hydroxamic Acids ; pharmacology ; Inhibitor of Apoptosis Proteins ; Microtubule-Associated Proteins ; analysis ; Neoplasm Proteins ; analysis ; Proto-Oncogene Proteins c-bcl-2 ; analysis ; Stomach Neoplasms ; drug therapy ; pathology ; Tumor Suppressor Protein p53 ; analysis ; physiology ; bcl-2-Associated X Protein ; analysis
Result Analysis
Print
Save
E-mail