1.Progress in application of adult endogenous neurogenesis in brain injury repair.
Tian-Yu BAI ; Jiao MU ; Peng HAO ; Hong-Mei DUAN ; Fei HAO ; Wen ZHAO ; Yu-Dan GAO ; Zi-Jue WANG ; Zhao-Yang YANG ; Xiao-Guang LI
Acta Physiologica Sinica 2023;75(2):231-240
Persistent neurogenesis exists in the subventricular zone (SVZ) of the ventricles and the subgranular zone (SGZ) of the dentate gyrus of the hippocampus in the adult mammalian brain. Adult endogenous neurogenesis not only plays an important role in the normal brain function, but also has important significance in the repair and treatment of brain injury or brain diseases. This article reviews the process of adult endogenous neurogenesis and its application in the repair of traumatic brain injury (TBI) or ischemic stroke, and discusses the strategies of activating adult endogenous neurogenesis to repair brain injury and its practical significance in promoting functional recovery after brain injury.
Adult
;
Animals
;
Humans
;
Brain/physiopathology*
;
Hippocampus/physiopathology*
;
Mammals/physiology*
;
Neurogenesis/physiology*
;
Brain Hemorrhage, Traumatic/therapy*
;
Ischemic Stroke/therapy*
;
Recovery of Function
;
Spinal Cord/physiopathology*
2.Probiotics improves abnormal behavior and hippocampal injury in pregnant-stressed offspring rats.
Zhongjun HUANG ; Bin ZHANG ; Libin LIAO ; Jie CHEN ; Ruping ZHENG ; Deyang CAI ; Jufang HUANG
Journal of Central South University(Medical Sciences) 2022;47(4):443-452
OBJECTIVES:
During pregnancy, pregnant women are prone to stress reactions due to external stimuli, affecting their own health and fetal development. At present, there is no good treatment for the stress reactions from pregnant women during pregnancy. This study aims to explore the effect of probiotics on abnormal behavior and hippocampal injury in pregnant stressed offspring.
METHODS:
SD pregnant rats were divided into a control group, a stress group, and a probiotics group, with 6 rats in each group. The control group was untreated; the stress group was given restraint stress on the 15th-20th day of pregnancy; the probiotics group was given both bifidobacterium trisporus capsules and restraint stress on the 15th-20th day of pregnancy, and the offspring continued to be fed with probiotics until 60 days after birth (P60). The offspring rats completed behavioral tests such as the open field test, the elevated plus maze test, the new object recognition test, and the barnes maze test at 60-70 d postnatally. Nissl's staining was used to reflect the injury of hippocampal neurons; immunohistochemical staining was used to detect the expression of microglia marker ionized calcium binding adapter molecule 1 (IBA-1) which can reflect microglia activation; ELISA was used to detect the content of plasma TNF-α and IL-1β; Western blotting was used to detect the expression of Bax, Bcl-2, and caspase-3.
RESULTS:
The retention time of offspring rats in the stress group in the central area of the open field was significantly less than that in the control group (P<0.01), and the retention time of offspring rats in the probiotic group in the central area of the open field was significantly more than that in the stress group (P<0.05). The offspring rats in the stress group stayed in the open arm for a shorter time than the control group (P<0.05) and entered the open arm less often than the control group (P<0.01); the offspring rats in the probiotic group stayed in the open arm for a longer time than the stress group and entered the open arm more often than the stress group (both P<0.05). The discrimination ratio for new to old objects in the offspring rats of the stress group was significantly lower than that of the control group (P<0.01), and the discrimination ratio for new to old objects in the offspring rats of the probiotic group was significantly higher than that of the stress group (P<0.05). The offspring rats in the stress group made significantly more mistakes than the control group (P<0.05), and the offspring rats in the probiotic group made significantly fewer mistakes than the stress group (P<0.05). Compared with the control group, the numbers of Nissl bodies in CA1, CA3, and DG area were significantly reduced in the offspring rats of the stress group (all P<0.001), the number of activated microglia in DG area of hippocampus was significantly increased (P<0.01), the contents of TNF-α and IL-1β in peripheral blood were significantly increased (P<0.05 or P<0.01), the protein expression level of Bcl-2 was significantly down-regulated, and the protein expression levels of Bax and caspase-3 were significantly up-regulated (all P<0.001). Compared with the stress group, the numbers of Nissl bodies in CA1, CA3, and DG area were significantly increased in the probiotic group offspring rats (P<0.001, P<0.01, P<0.05), the number of activated microglia in the DG area of hippocampus was significantly reduced (P<0.05), and the TNF-α and IL-1β levels in peripheral blood were significantly decreased (both P<0.05), the protein expression level of Bcl-2 was significantly up-regulated, and the protein expression levels of Bax and caspase-3 were significantly down-regulated (all P<0.001).
CONCLUSIONS
Probiotic intervention partially ameliorated anxiety and cognitive impairment in rats offspring of pregnancy stress, and the mechanism may be related to increasing the number of neurons, inhibiting the activation of hippocampal microglia, and reducing inflammation and apoptosis.
Animals
;
Caspase 3/metabolism*
;
Female
;
Hippocampus/physiopathology*
;
Humans
;
Pregnancy
;
Probiotics/therapeutic use*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Rats
;
Stress, Psychological/therapy*
;
Tumor Necrosis Factor-alpha/metabolism*
;
bcl-2-Associated X Protein/metabolism*
3.Altered expressions of SphK1 and S1PR2 in hippocampus of epileptic rats.
Yuan-Yuan DONG ; Lin WANG ; Xu CHU ; Shuai CUI ; Qing-Xia KONG
Chinese Journal of Applied Physiology 2019;35(4):308-311
OBJECTIVE:
To observe the expressions of sphingosine kinase 1 (SphK1) and sphingosine-1-phosphate receptor 2 (S1PR2) in hippocampus of epileptic rats and to investigate the pathogenesis of SphK1 and S1PR2 in epilepsy.
METHODS:
One hundred and eight male Sprague-Dawley (SD) rats were randomly divided into control group (n=48) and pilocarpine (PILO) group (n=60). A robust convulsive status epilepticus (SE) was induced in PILO group rats by the application of pilocarpine. Control group rats were injected with respective of physiological saline. Pilocarpine group was randomly divided into 6 subgroups (n=8): acute group (E6 h, E1 d, E3 d), latent group (E7 d) and chronic group (E30 d, E56 d). Each subgroup has 8 control rats and 8 epileptic rats. Hippocampal tissue and brain slices were obtained from control rats and rats subjected to the Li-PILO model of epilepsy at 6 h, 1 d, 3 d,7 d,30 d and 56 d after status epilepticus (SE). Western blot technique was used to determine the expressions of SphK1 and S1PR2 in hippocampus at different point of time after pilocarpine treatment. Immunofluorescence was applied to detect the activation and proliferation of hippocampal astrocytes and the localization of SphK1 and S1PR2 in rat hippocampal astrocytes.
RESULTS:
Compared with control group, the levels of SphK1 in acute phase (E3 d), latent phase (E7 d) and chronic phase (E30 d, E56 d) were significantly increased while the expressions of S1PR2 were decreased in acute phase (E3 d), latent phase (E7 d) and chronic phase (E30 d, E56 d)(P<0.05 or P<0.01). Immunofluorescence results showed astrocyte activation and proliferation in hippocampus of epileptic (E7 d) rats (P<0.05). Confocal microscopy confirmed the preferential expressions of SphK1 and S1PR2 in epileptic rat(E7 d)hippocampal astrocytes.
CONCLUSION
The results indicate that SphK1 and S1PR2 may play an important role in the pathogenesis of epilepsy by regulating the activation and proliferation of hippocampal astrocytes and altering neuronal excitability.
Animals
;
Astrocytes
;
enzymology
;
Epilepsy
;
enzymology
;
physiopathology
;
Hippocampus
;
cytology
;
enzymology
;
Male
;
Phosphotransferases (Alcohol Group Acceptor)
;
metabolism
;
Pilocarpine
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Lysosphingolipid
;
metabolism
4.Puerarin Up-regulates Methyl-CpG Binding Protein 2 Phosphorylation in Hippocampus of Vascular Dementia Rats.
Hu-Qing WANG ; Meng ZHANG ; Jia-Xin ZHAO ; Hai-Qin WU ; Zhen GAO ; Gui-Lian ZHANG ; Ru ZHANG
Chinese journal of integrative medicine 2018;24(5):372-377
OBJECTIVETo observe the effect of puerarin on methyl-CpG binding protein 2 (MeCP2) phosphorylation (pMeCP2) in the hippocampus of a rat model of vascular dementia (VD).
METHODSThirty-six healthy Sprague-Dawley rats were randomly assigned to the sham-operated group, dementia group and puerarintreated group using a random number table (n=12 per group). The modifified permanent bilateral common carotid artery occlusion method was used to establish the VD model. The sham-operated and dementia groups were given 2 mL/d of saline, while the puerarin-treated group was given 100 mg/(kg•d) of puerarin for 17 days. The learning and memory abilities were evaluated by the Morris water maze test. Hematoxylin-eosin staining, immunohistochemical (IHC) staining and Western blot analysis were carried out to observe changes in neuron morphology and in level of pMeCP2 in the hippocampus, respectively.
RESULTSThe morphologies of rat hippocampal neurons in the puerarintreated group were markedly improved compared with the dementia group. The escape latency of the dementia group was significantly longer than the sham-operated group (P<0.05), while the puerarin-treated group was obviously shorter than the dementia group (P<0.05). Cross-platform times of the dementia group were signifificantly decreased compared with the sham-operated group (P<0.05), while the puerarin-treated group was obviously increased compared with the dementia group (P<0.05). IHC staining showed no significant difference in the number of MeCP2 positive cells among 3 groups (P>0.05). The number of pMeCP2 positive cells in the CA1 region of hippocampus in the dementia group was signifificantly increased compared with the sham-operated group, and the puerarin-treated group was signifificantly increased compared with the dementia group (both P<0.05). Western blot analysis showed no signifificant difference of MeCP2 expression among 3 groups (P>0.05). The expression of pMeCP2 in the dementia group was signifificantly increased compared with the sham-operated group, while it in the puerarin-treated group was signifificantly increased compared with the dementia group (P<0.05).
CONCLUSIONPuerarin could play a role in the protection of nerve cells through up-regulating pMeCP2 in the hippocampus, improving neuron morphologies, and enhancing learning and memory ablities in a rat model of VD.
Animals ; Dementia, Vascular ; drug therapy ; genetics ; physiopathology ; Hippocampus ; pathology ; Isoflavones ; chemistry ; pharmacology ; therapeutic use ; Memory ; drug effects ; Methyl-CpG-Binding Protein 2 ; metabolism ; Phosphorylation ; drug effects ; Rats, Sprague-Dawley ; Up-Regulation ; drug effects
5.Neuroprotective effect of the ethanol extract of Artemisia capillaris on transient forebrain ischemia in mice via nicotinic cholinergic receptor.
Huiyoung KWON ; Ji Wook JUNG ; Young Choon LEE ; Jong Hoon RYU ; Dong Hyun KIM
Chinese Journal of Natural Medicines (English Ed.) 2018;16(6):428-435
Artemisia capillaris Thunberg is a medicinal plant used as a traditional medicine in many cultures. It is an effective remedy for liver problems including hepatitis. Recent pharmacological reports have indicated that Artemisia species can exert various neurological effects. Previously, we reported a memory-enhancing effect of Artemisia species. However, the mechanisms underlying the neuroprotective effect of A. capillaris (AC) are still unknown. In the present study, we investigated the effect of an ethanol extract of AC on ischemic brain injury in a mouse model of transient forebrain ischemia. The mice were treated with AC for seven days, beginning one day before induction of transient forebrain ischemia. Behavioral deficits were investigated using the Y-maze. Nissl and Fluoro-jade B staining were used to indicate the site of injury. To determine the underlying mechanisms for the drug, we measured acetylcholinesterase activity. AC (200 mg·kg) treatment reduced transient forebrain ischemia-induced neuronal cell death in the hippocampal CA1 region. The AC-treated group also showed significant amelioration in the spontaneous alternation of the Y-maze test performance, compared to that in the untreated transient forebrain ischemia group. Moreover, AC treatment showed a concentration-dependent inhibitory effect on acetylcholinesterase activity in vitro. Finally, the effect of AC on forebrain ischemia was blocked by mecamylamine, a nonselective nicotinic acetylcholine receptor antagonist. Our results suggested that in a model of forebrain ischemia, AC protected against neuronal death through the activation of nicotinic acetylcholine receptors.
Acetylcholinesterase
;
metabolism
;
Animals
;
Artemisia
;
Cell Death
;
drug effects
;
Cholinergic Antagonists
;
pharmacology
;
Disease Models, Animal
;
Ethanol
;
chemistry
;
Hippocampus
;
pathology
;
physiopathology
;
Ischemic Attack, Transient
;
drug therapy
;
pathology
;
physiopathology
;
Male
;
Mecamylamine
;
pharmacology
;
Memory
;
drug effects
;
Mice
;
Mice, Inbred C57BL
;
Models, Neurological
;
Neuroprotective Agents
;
administration & dosage
;
pharmacology
;
Phytotherapy
;
Plant Components, Aerial
;
chemistry
;
Plant Extracts
;
administration & dosage
;
pharmacology
;
Receptors, Cholinergic
;
metabolism
6.Reproduction,genotype identification and evaluation of APP/PS1 transgenic mice.
Long TAN ; Hai-Qiang LI ; Yi-Bo LI ; Wei LIU ; Wei PANG ; Yu-Gang JIANG
Chinese Journal of Applied Physiology 2018;34(2):111-114
OBJECTIVES:
To identify the genotype of (APP/PS1) transgenic mice and evaluate the changing of cognitive and behavioral fu nctions, provide an effective animal model for the Alzheimer's disease (AD) research.
METHODS:
Male APP/PS1 transgenic mice mated with female APP/PS1 transgenic mice, and the genotype of their filial mice was identified by PCR. The APP +/PS1 + mice were assigned into AD model group (AD group, =8), and the APP/PS1 mice were assigned into control group (CT group, =8). The Morris water maze test was carried out to detect the capacity of learning and memory of mice. After that, the mice were sacrificed and the brain tissues were sampled and stained by HE and congo red for the pathological examination.
RESULTS:
①A APP/PS1 genome DNA about 360 bp size was detected. The methods of feeding and breeding were successful to attain APP/PS1 transgenic mice.②Statistical significance was found in the differences of the capacity of learning and memory between 7-month-old APP/PS1 positive mice and negative mice (<0.05).③The results of HE stain showed that the structure and cellular morphology of hippocampus of AD mice were obviously abnormal. The results of congo red stain showed that positive amyloid plaque was observed in brains of AD mice.
CONCLUSIONS
APP/PS1 transgenic mice present typical symptoms and behaviors of Alzheimer's disease. The transgenic mouse is an effective tool for the research and prevention of AD.
Alzheimer Disease
;
physiopathology
;
Amyloid beta-Protein Precursor
;
genetics
;
Animals
;
Disease Models, Animal
;
Female
;
Genotype
;
Hippocampus
;
pathology
;
Male
;
Maze Learning
;
Mice
;
Mice, Inbred C57BL
;
Mice, Transgenic
;
Plaque, Amyloid
;
pathology
;
Presenilin-1
;
genetics
7.GABA Receptor Activity Suppresses the Transition from Inter-ictal to Ictal Epileptiform Discharges in Juvenile Mouse Hippocampus.
Yan-Yan CHANG ; Xin-Wei GONG ; Hai-Qing GONG ; Pei-Ji LIANG ; Pu-Ming ZHANG ; Qin-Chi LU
Neuroscience Bulletin 2018;34(6):1007-1016
Exploring the transition from inter-ictal to ictal epileptiform discharges (IDs) and how GABA receptor-mediated action affects the onset of IDs will enrich our understanding of epileptogenesis and epilepsy treatment. We used Mg-free artificial cerebrospinal fluid (ACSF) to induce epileptiform discharges in juvenile mouse hippocampal slices and used a micro-electrode array to record the discharges. After the slices were exposed to Mg-free ACSF for 10 min-20 min, synchronous recurrent seizure-like events were recorded across the slices, and each event evolved from inter-ictal epileptiform discharges (IIDs) to pre-ictal epileptiform discharges (PIDs), and then to IDs. During the transition from IIDs to PIDs, the duration of discharges increased and the inter-discharge interval decreased. After adding 3 μmol/L of the GABA receptor agonist muscimol, PIDs and IDs disappeared, and IIDs remained. Further, the application of 10 μmol/L muscimol abolished all the epileptiform discharges. When the GABA receptor antagonist bicuculline was applied at 10 μmol/L, IIDs and PIDs disappeared, and IDs remained at decreased intervals. These results indicated that there are dynamic changes in the hippocampal network preceding the onset of IDs, and GABA receptor activity suppresses the transition from IIDs to IDs in juvenile mouse hippocampus.
Animals
;
Animals, Newborn
;
Bicuculline
;
pharmacology
;
Disease Models, Animal
;
Epilepsy
;
pathology
;
GABA-A Receptor Agonists
;
pharmacology
;
GABA-A Receptor Antagonists
;
therapeutic use
;
Hippocampus
;
drug effects
;
metabolism
;
physiopathology
;
In Vitro Techniques
;
Magnesium
;
metabolism
;
pharmacology
;
Male
;
Membrane Potentials
;
drug effects
;
Mice
;
Mice, Inbred C57BL
;
Muscimol
;
pharmacology
;
Nerve Net
;
drug effects
;
Receptors, GABA-A
;
metabolism
8.ZNF804A Variation May Affect Hippocampal-Prefrontal Resting-State Functional Connectivity in Schizophrenic and Healthy Individuals.
Yuyanan ZHANG ; Hao YAN ; Jinmin LIAO ; Hao YU ; Sisi JIANG ; Qi LIU ; Dai ZHANG ; Weihua YUE
Neuroscience Bulletin 2018;34(3):507-516
The ZNF804A variant rs1344706 has consistently been associated with schizophrenia and plays a role in hippocampal-prefrontal functional connectivity during working memory. Whether the effect exists in the resting state and in patients with schizophrenia remains unclear. In this study, we investigated the ZNF804A polymorphism at rs1344706 in 92 schizophrenic patients and 99 healthy controls of Han Chinese descent, and used resting-state functional magnetic resonance imaging to explore the functional connectivity in the participants. We found a significant main effect of genotype on the resting-state functional connectivity (RSFC) between the hippocampus and the dorsolateral prefrontal cortex (DLPFC) in both schizophrenic patients and healthy controls. The homozygous ZNF804A rs1344706 genotype (AA) conferred a high risk of schizophrenia, and also exhibited significantly decreased resting functional coupling between the left hippocampus and right DLPFC (F(2,165) = 13.43, P < 0.001). The RSFC strength was also correlated with cognitive performance and the severity of psychosis in schizophrenia. The current findings identified the neural impact of the ZNF804A rs1344706 on hippocampal-prefrontal RSFC associated with schizophrenia.
Adult
;
Analysis of Variance
;
Female
;
Functional Laterality
;
genetics
;
Genotype
;
Hippocampus
;
diagnostic imaging
;
Humans
;
Image Processing, Computer-Assisted
;
Kruppel-Like Transcription Factors
;
genetics
;
Magnetic Resonance Imaging
;
Male
;
Neural Pathways
;
diagnostic imaging
;
Neuropsychological Tests
;
Oxygen
;
blood
;
Polymorphism, Single Nucleotide
;
genetics
;
Prefrontal Cortex
;
diagnostic imaging
;
Psychiatric Status Rating Scales
;
Schizophrenia
;
diagnostic imaging
;
genetics
;
physiopathology
;
Severity of Illness Index
;
Young Adult
9.Temporal lobe epilepsy and adult hippocampal neurogenesis.
Liying CHEN ; Yi WANG ; Zhong CHEN
Journal of Zhejiang University. Medical sciences 2017;46(1):22-29
Temporal lobe epilepsy (TLE) is a common and severe neurological disorder which is often intractable. It can not only damage the normal structure and function of hippocampus, but also affect the neurogenesis in dentate gyrus (DG). It is well documented from researches on the animal models of TLE that after a latent period of several days, prolonged seizure activity leads to a dramatic increase in mitotic activity in the hippocampal DG. However, cell proliferation returns to baseline levels within 3-4 weeks after status epilepticus (SE). Meanwhile, there are two major abnormalities of DG neurogenesis, including the formation of hilar basal dendrites and the ectopic migration of newborn granule cells into the polymorphic cell layer, which may affect epileptogenesis and seizure onset. However, the specific contribution of these abnormalities to seizures is still unknown. In other words, whether they are anti-epileptic or pro-epileptic is still under heated discussion. This article systematically reviews current knowledge on neurogenesis and epilepsy based on the results of studies in recent years and discusses the possible roles of neurogenesis in epileptogenesis and pathologic mechanisms, so as to provide information for the potential application of neurogenesis as a new clinical therapeutic target for temporal lobe epilepsy.
Animals
;
Brain
;
Cell Movement
;
physiology
;
Cell Proliferation
;
physiology
;
Dendrites
;
pathology
;
Dentate Gyrus
;
growth & development
;
pathology
;
Epilepsy, Temporal Lobe
;
etiology
;
pathology
;
physiopathology
;
Hippocampus
;
growth & development
;
pathology
;
Humans
;
Mitosis
;
physiology
;
Neurogenesis
;
physiology
;
Neurons
;
pathology
;
Seizures
;
etiology
;
physiopathology
;
Status Epilepticus
;
physiopathology
10.The role of central cholinergic system in epilepsy.
Ying WANG ; Yi WANG ; Zhong CHEN
Journal of Zhejiang University. Medical sciences 2017;46(1):15-21
Epilepsy is a chronic neurological disorder, which is not only related to the imbalance between excitatory glutamic neurons and inhibitory GABAergic neurons, but also related to abnormal central cholinergic regulation. This article summarizes the scientific background and experimental data about cholinergic dysfunction in epilepsy from both cellular and network levels, further discusses the exact role of cholinergic system in epilepsy. In the cellular level, several types of epilepsy are believed to be associated with aberrant metabotropic muscarinic receptors in several different brain areas, while the mutations of ionotropic nicotinic receptors have been reported to result in a specific type of epilepsy-autosomal dominant nocturnal frontal lobe epilepsy. In the network level, cholinergic projection neurons as well as their interaction with other neurons may regulate the development of epilepsy, especially the cholinergic circuit from basal forebrain to hippocampus, while cholinergic local interneurons have not been reported to be associated with epilepsy. With the development of optogenetics and other techniques, dissect and regulate cholinergic related epilepsy circuit has become a hotspot of epilepsy research.
Acetylcholine
;
physiology
;
Basal Forebrain
;
pathology
;
Brain Chemistry
;
genetics
;
physiology
;
Cholinergic Neurons
;
chemistry
;
classification
;
pathology
;
physiology
;
Epilepsy
;
genetics
;
pathology
;
physiopathology
;
Epilepsy, Frontal Lobe
;
genetics
;
GABAergic Neurons
;
physiology
;
Hippocampus
;
pathology
;
Humans
;
Mutation
;
genetics
;
physiology
;
Neurons
;
Non-Neuronal Cholinergic System
;
genetics
;
physiology
;
Receptors, Muscarinic
;
genetics
;
physiology
;
Receptors, Nicotinic
;
genetics
;
physiology
;
Synaptic Transmission
;
genetics
;
physiology

Result Analysis
Print
Save
E-mail