1.Effect of Huayu Tongluo moxibustion on learning-memory ability in rats with vascular dementia based on hippocampal Mst1/NF-κB p65 pathway.
Ping WANG ; Jun YANG ; Yu KONG ; Yating ZHANG ; Yinqiu FAN ; Haiping SHI ; Lanying LIU
Chinese Acupuncture & Moxibustion 2025;45(1):53-60
OBJECTIVE:
To observe the effects of Huayu Tongluo (transforming stasis and unblocking collaterals) moxibustion on learning-memory ability and hippocampal mammalian sterile 20-like kinase 1 (Mst1)/nuclear factor κB (NF-κB) p65 pathway related to inflammatory response in rats with vascular dementia (VD).
METHODS:
A total of 60 male Wistar rats of SPF grade were randomly divided into a sham operation group (12 rats) and a modeling group (48 rats). VD model was established by the method of modified bilateral common carotid artery permanent ligation in the modeling group. Thirty-six rats with successful modeling were randomly divided into a model group, a moxibustion group and a western medication group, with 12 rats in each group. Huayu Tongluo moxibustion was applied at "Dazhui" (GV14), "Baihui" (GV20) and "Shenting" (GV24) in the moxibustion group, 20 min each time, once a day, 7 day-intervention was as one course, and 1 day-interval was taken between two courses, for a total of 3 courses. In the western medication group, piracetam was given 0.72 mg/kg by intragastric administration, twice a day, the course of intervention was same as that of the moxibustion group. The learning-memory ability was detected by Morris water maze test; the morphology of hippocampal CA1 region was observed by HE staining; the mRNA expression of Mst1, M1 microglia markers CD86, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) was detected by real-time PCR; the levels of IL-6 and TNF-α in hippocampus were detected by ELISA; and the protein expression of Mst1 and NF-κB p65 in hippocampus was detected by Western blot in rats of each group.
RESULTS:
Compared with the sham operation group, the escape latency was prolonged in the model group (P<0.05); compared with the model group, the escape latency was shortened in the moxibustion group and the western medication group (P<0.05). The cells in the CA1 region of hippocampus were disordered, cell collapse and irregular nuclei could be observed in the model group; compared with the model group, the cell arrangement in the CA1 region of hippocampus was more regular, and the damage was improved in the moxibustion group and the western medication group. Compared with the sham operation group, the mRNA expression of Mst1, CD86, IL-6 and TNF-α, as well as the protein expression of Mst1, NF-κB p65 in hippocampus were increased in the model group (P<0.05). Compared with the model group, the mRNA expression of Mst1, CD86, IL-6 and TNF-α, as well as the protein expression of Mst1, NF-κB p65 in hippocampus were decreased in the moxibustion group and the western medication group (P<0.05). Compared with the sham operation group, the levels of IL-6 and TNF-α in hippocampus were increased in the model group (P<0.05). Compared with the model group, the levels of IL-6 and TNF-α in hippocampus were decreased in the moxibustion group and the western medication group (P<0.05).
CONCLUSION
Huayu Tongluo moxibustion can improve the learning-memory ability of VD rats, the mechanism may be related to regulating the activation of microglia through Mst1/NF-κB p65 pathway, reducing the release of pro-inflammatory factors i.e. IL-6 and TNF-α, so as to alleviating the damage of inflammatory factors in the hippocampus of VD rats.
Animals
;
Male
;
Rats
;
Moxibustion
;
Hippocampus/metabolism*
;
Rats, Wistar
;
Dementia, Vascular/genetics*
;
Memory/drug effects*
;
Humans
;
Transcription Factor RelA/genetics*
;
Learning
;
Protein Serine-Threonine Kinases/genetics*
;
Acupuncture Points
;
Interleukin-6/genetics*
;
Signal Transduction/drug effects*
;
Drugs, Chinese Herbal
2.Steroid sulfatase inhibitor DU-14 prevents amyloid β-protein-induced depressive-like behavior and theta rhythm suppression in rats.
Xing-Hua YUE ; Zhao-Jun WANG ; Mei-Na WU ; Hong-Yan CAI ; Jun ZHANG
Acta Physiologica Sinica 2025;77(5):801-810
The hippocampus, a major component of the limbic system, is the most important region related to emotion regulation and memory processing. Cognitive impairment and depressive symptoms observed in Alzheimer's disease (AD) patients may be attributed to hippocampal damage caused by amyloid β-protein (Aβ). Our previous studies have demonstrated that a steroid sulfatase inhibitor DU-14 can enhance hippocampal synaptic plasticity and spatial memory abilities in a chronic AD murine model by counteracting the toxic effects of Aβ. However, limited experimental evidence exists regarding the efficacy of steroid sulfatase inhibitor on depressive symptoms in AD animal models. In this study, we investigated the effects of DU-14 on depressive symptoms and theta-band neuronal oscillations in rats with intrahippocampal injection of Aβ1-42 using various behavioral tests such as sucrose preference test, tail suspension test, forced swimming test, and in vivo hippocampal local field potential (LFP) recording. The results demonstrated that, in comparison to the control group: (1) rats in the Aβ group exhibited a decrease in sucrose preference, indicating a loss of interest in pleasurable activities; (2) rats in the Aβ group displayed aggravated depressive-like behavior characterized by prolonged immobility time during tail suspension and forced swimming tests; (3) Aβ disrupted the induction of theta rhythm via tail pinch stimulation, and resulted in a significant reduction in peak power of theta rhythm. In contrast to the Aβ group, pretreatment with DU-14 resulted in: (1) a significant improvement in Aβ-induced anhedonia, as evidenced by increased sucrose preference; (2) significant alleviation of Aβ-induced despair and depressive-like behaviors, reflected by reduced immobility time during tail suspension and forced swimming tests; (3) successful mitigation of Aβ-mediated inhibition on bilateral hippocampal theta rhythm. These findings indicate that steroid sulfatase inhibitor DU-14 can counteract neurotoxicity induced by Aβ, and prevent Aβ-induced depressive-like behavior and suppression of theta rhythm.
Animals
;
Amyloid beta-Peptides/toxicity*
;
Rats
;
Depression/physiopathology*
;
Theta Rhythm/drug effects*
;
Hippocampus/physiopathology*
;
Male
;
Rats, Sprague-Dawley
;
Alzheimer Disease/physiopathology*
;
Steryl-Sulfatase/antagonists & inhibitors*
;
Peptide Fragments
;
Behavior, Animal/drug effects*
3.Effect of Eucommiae Cortex extract mediated by ERβ/JNK pathway on learning and memory ability of APP/PS1 double-transgenic mice.
Yue LI ; Li-Li ZHANG ; Can ZHAO ; Hong-Mei ZHAO ; Yan WANG ; Jin-Lei FU ; Jie ZHANG ; Ning ZHANG ; Hong-Dan XU
China Journal of Chinese Materia Medica 2025;50(2):285-293
To study the ameliorative effect of Eucommiae Cortex extract on spatial learning disabilities in APP/PS1 double-transgenic mice and explore its relationship with estrogen receptor β(ERβ)/c-Jun N-terminal kinase(JNK) signaling pathway, sixty 3-month-old male APP/PS1 mice were randomly divided into a model group, an anti-brain failure capsule group(0.585 g·kg~(-1)), a donepezil hydrochloride group(0.65 mg·kg~(-1)), and a Eucommiae Cortex extract group(1.3 g·kg~(-1)), and 15 C57BL/6 mice of the same genetic background were set as WT control group. The learning and memory ability of mice was assessed by the Morris water maze test(MWM), the passive avoidance test(PAT), and the novel object recognition test(NOR). The histomorphological and cellular ultrastructural features of the hippocampal region of the mice were observed by hematoxylin-eosin(HE) staining and transmission electron microscopy(TEM); the molecular docking validation of the key active ingredients and the key targets was performed by using AutoDock Vina software, and the immunohistochemical method(IHC) was used to detect the ERβ expression in the dentate gyrus(DG) area of mouse hippocampus. Western blot(WB) was utilized to detect the expression of ERβ, p-JNK, and JNK in mouse hippocampal area. Compared with those in the WT control group, the results of behavioral experiments showed that the latency of the mice in the model group was significantly increased, the number of platform traversals, and the target quadrant residence time were significantly decreased in the MWM. The evasion latency was significantly reduced, and the number of errors was significantly increased in the PAT. The index of recognition of novel objects was significantly reduced in the NOR. The results of HE staining indicated that the hippocampal area of mice in the model group showed a decrease in the number of neurons, disorganization of pyramidal cell arrangement, nucleus consolidation, and other changes. TEM results showed that some neuronal nuclei in the hippocampal area had a consolidated state, slightly thickened and aberrant nuclear membranes, and fewer intracytoplasmic nidus bodies; the IHC results showed that the expression of ERβ in the hippocampal DG area of the mice was reduced. The WB results showed that the ERβ expression in the hippocampal tissue was decreased, and the p-JNK/JNK level was elevated. Compared with the model group, the Eucommiae Cortex extract group showed a significant decrease in latency, and increase in number of platform traversals and target quadrant residence time in the MWM, a significant increase in evasion latency and decrease in number of errors in the PAT, and a significant increase in the index of recognition of novel objects in the NOR. In addition, there was an increase in the number of neurons in the hippocampal area of mice. The pyramidal cells tended to be arranged in an orderly manner; the nuclei of neurons in the hippocampal area were in a better state; the expression of ERβ in the hippocampal DG area of the mice was elevated; the expression of ERβ in the hippocampal tissue was elevated, and the level of p-JNK/JNK was reduced. The effects of donepezil hydrochloride group and anti-brain failure capsule on APP/PS1 mice in terms of behavioral, HE, and TEM indexes were similar to those of Eucommiae Cortex extract, and there was no significant difference between donepezil hydrochloride group and the model group in IHC and WB experiments, and the results of molecular docking indicated that the estrogen-like components in Eucommiae Cortex extract were tightly bound to ERβ. In conclusion, the binding of Eucommiae Cortex extract to estrogen receptors, regulation of ERβ expression, and activation of ERβ/JNK signaling pathway may be one of the key mechanisms by which it improves the learning and memory ability of APP/PS1 mice.
Animals
;
Male
;
Mice
;
Mice, Transgenic
;
Memory/drug effects*
;
Mice, Inbred C57BL
;
Estrogen Receptor beta/genetics*
;
Eucommiaceae/chemistry*
;
Alzheimer Disease/psychology*
;
Amyloid beta-Protein Precursor/metabolism*
;
Presenilin-1/metabolism*
;
Humans
;
MAP Kinase Signaling System/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Hippocampus/metabolism*
;
Maze Learning/drug effects*
;
Learning/drug effects*
4.Mechanism of Guben Jiannao Liquid on Alzheimer's disease by regulating autophagy based on LKB1/AMPK/mTOR pathway.
Jing-Fan ZHANG ; Qing-Hua LONG ; Chu-Hua ZENG ; Yi-Min CHEN ; Zhe-Yao XIE ; Yuan-Qin CAI ; Xi WANG
China Journal of Chinese Materia Medica 2025;50(2):293-300
This study explores the mechanism of Guben Jiannao Liquid on Alzheimer's disease(AD) by regulating autophagy based on the liver kinase B1(LKB1)/adenosine monophosphate-activated protein kinase(AMPK)/mammalian target of rapamycin(mTOR) pathway. Male SD rats were randomly divided into the blank group, model group, low-dose and high-dose groups of Guben Jiannao Liquid, and rapamycin group, with 10 rats in each group. Except for the blank group, all other groups of rats were injected bilaterally in the hippocampus with β-amyloid(Aβ)_(1-42) to establish the AD model. The low-dose(6.21 g·kg~(-1)) and high-dose(12.42 g·kg~(-1)) groups of Guben Jiannao Liquid and rapamycin group(1 mg·kg~(-1)) were given the corresponding drugs by gavage, and the blank and model groups were given an equal volume of saline by gavage for four weeks. Morris water maze was used to test the learning and memory ability of rats in each group; hematoxylin-eosin(HE) and Nissl staining were used to observe the morphological and quantitative changes of neurons and Nissl bodies in the CA1 region of rat hippocampus; immunohistochemistry was utilized to detect Aβ-positive cell expression in the CA1 region of rat hippocampus; transmission electron microscopy was employed to observe ultrastructural changes in rat hippocampal tissue, and Western blot was used to examine the protein expression levels of LKB1, p-AMPK/AMPK, p-mTOR/mTOR, Beclin1, p62, and LC3-Ⅱ in the hippocampal tissue of the rats. The results showed that compared with those in the blank group, rats in the model group had elevated evasion latency and decreased number of platform transversal and residence time in the platform quadrant. The number of neurons in the hippocampal area was reduced, and the morphology was impaired. The average integral optical density value of Aβ-positive cells was elevated; the expression levels of LKB1, p-AMPK/AMPK, Beclin1, and LC3-Ⅱ were decreased, and the expression levels of p-mTOR/mTOR and p62 were increased. Compared with those in the model group, rats in the low-dose and high-dose groups of Guben Jiannao Liquid had shorter evasion latency, higher number of platform transversal, longer residence time in the platform quadrant, increased number of neurons, decreased expression of Aβ-positive cells and average integral optical density values, and increased number of autophagic lysosomes in hippocampal tissue. The expression levels of LKB1, Beclin1, and LC3-Ⅱ were elevated in the hippocampus of rats in the low-dose group of Guben Jiannao Liquid. The expression levels of LKB1, p-AMPK/AMPK, Beclin1, and LC3-Ⅱ were elevated in the hippocampal tissue of rats in the high-dose group of Guben Jiannao Liquid, and the expression levels of p-mTOR/mTOR and p62 were decreased. The findings suggest that Guben Jiannao Liquid can improve cognitive impairment in AD rats, and its mechanism of action may be related to the activation of the LKB1/AMPK/mTOR signaling pathway and the up-regulation of autophagy level.
Animals
;
Alzheimer Disease/physiopathology*
;
Male
;
TOR Serine-Threonine Kinases/genetics*
;
Autophagy/drug effects*
;
Rats, Sprague-Dawley
;
Protein Serine-Threonine Kinases/genetics*
;
AMP-Activated Protein Kinases/genetics*
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Signal Transduction/drug effects*
;
AMP-Activated Protein Kinase Kinases
;
Humans
;
Hippocampus/metabolism*
5.Mechanism of Daotan Xixin Decoction in treating APP/PS1 mice based on high-throughput sequencing technology and bioinformatics analysis.
Bo-Lun CHEN ; Jian-Zheng LU ; Xin-Mei ZHOU ; Xiao-Dong WEN ; Yuan-Jing JIANG ; Ning LUO
China Journal of Chinese Materia Medica 2025;50(2):301-313
This study aims to investigate the therapeutic effect and mechanism of Daotan Xixin Decoction on APP/PS1 mice. Twelve APP/PS1 male mice were randomized into four groups: APP/PS1 and low-, medium-, and high-dose Daotan Xixin Decoction. Three C57BL/6 wild-type mice were used as the control group. The learning and memory abilities of mice in each group were examined by the Morris water maze test. The pathological changes of hippocampal nerve cells were observed by hematoxylin-eosin staining and Nissl staining. Immunohistochemistry was employed to detect the expression of β-amyloid(Aβ)_(1-42) in the hippocampal tissue. The high-dose Daotan Xixin Decoction group with significant therapeutic effects and the model group were selected for high-throughput sequencing. The differentially expressed gene(DEG) analysis, Gene Ontology(GO) analysis, Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis, and Gene Set Variation Analysis(GSVA) were performed on the sequencing results. RT-qPCR and Western blot were conducted to determine the mRNA and protein levels, respectively, of some DEGs. Compared with the APP/PS1 group, Daotan Xixin Decoction at different doses significantly improved the learning and memory abilities of APP/PS1 mice, ameliorated the neuropathological damage in the CA1 region of the hippocampus, increased the number of neurons, and decreased the deposition of Aβ_(1-42) in the brain. A total of 1 240 DEGs were screened out, including 634 genes with up-regulated expression and 606 genes with down-regulated expression. The GO analysis predicted the biological processes including RNA splicing and protein folding, the cellular components including spliceosome complexes and nuclear spots, and the molecular functions including unfolded protein binding and heat shock protein binding. The KEGG pathway enrichment analysis revealed the involvement of neurodegenerative disease pathways, amyotrophic lateral sclerosis, and splicing complexes. Further GSVA pathway enrichment analysis showed that the down-regulated pathways involved nuclear factor-κB(NF-κB)-mediated tumor necrosis factor-α(TNF-α) signaling pathway, UV response, and unfolded protein response, while the up-regulated pathways involved the Wnt/β-catenin signaling pathway. The results of RT-qPCR and Western blot showed that compared with the APP/PS1 group, Daotan Xixin Decoction at different doses down-regulated the mRNA and protein levels of signal transducer and activator of transcription 3(STAT3), NF-κB, and interleukin-6(IL-6) in the hippocampus. In conclusion, Daotan Xixin Decoction can improve the learning and memory abilities of APP/PS1 mice by regulating the STAT3/NF-κB/IL-6 signaling pathway.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Male
;
Alzheimer Disease/metabolism*
;
Computational Biology
;
Mice, Inbred C57BL
;
High-Throughput Nucleotide Sequencing
;
Amyloid beta-Protein Precursor/metabolism*
;
Hippocampus/metabolism*
;
Mice, Transgenic
;
Presenilin-1/metabolism*
;
Humans
;
Memory/drug effects*
;
Maze Learning/drug effects*
;
Amyloid beta-Peptides/genetics*
;
Disease Models, Animal
6.Antidepressant mechanism of Baihe Dihuang Decoction based on metabolomics and network pharmacology.
Chao HU ; Hui YANG ; Hong-Qing ZHAO ; Si-Qi HUANG ; Hong-Yu LIU ; Shui-Han ZHANG ; Lin TANG
China Journal of Chinese Materia Medica 2025;50(1):10-20
The Baihe Dihuang Decoction(BDD) is a representative traditional Chinese medicine formula that has been used to treat depression. This study employed metabolomics and network pharmacology to investigate the mechanism of BDD in the treatment of depression. Fifty male Sprague-Dawley(SD) rats were randomly assigned to the normal control group, model group, fluoxetine group, and high-and low-dose BDD groups. A rat model of depression was established through chronic unpredictable mild stress(CUMS), and the behavioral changes were detected by forced swimming test and open field test. Metabolomics technology was used to analyze the metabolic profiles of serum and hippocampal tissue to screen differential metabolites and related metabolic pathways. Additionally, network pharmacology and molecular docking techniques were used to investigate the key targets and core active ingredients of BDD in improving metabolic abnormalities of depression. A "component-target-metabolite-pathway" regulatory network was constructed. BDD could significantly improve depressive-like behavior in CUMS rats and regulate 12 differential metabolites in serum and 27 differential metabolites in the hippocampus, involving tryptophan metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis, alanine, aspartate, and glutamate metabolism, tyrosine metabolism, and purine metabolism. Verbascoside, isorbascoside, and regaloside B were the key active ingredients for improving metabolic abnormalities in depression. Epidermal growth factor receptor(EGFR), protooncogene tyrosine-protein kinase(SRC), glycogen synthase kinase 3β(GSK3β), and androgen receptor(AR) were the key core targets for improving metabolic abnormalities of depression. This study offered a preliminary insight into the mechanism of BDD in alleviating metabolic abnormalities of depression through network regulation, providing valuable guidance for its clinical use and subsequent research.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Rats, Sprague-Dawley
;
Rats
;
Metabolomics
;
Depression/genetics*
;
Antidepressive Agents/chemistry*
;
Network Pharmacology
;
Hippocampus/drug effects*
;
Humans
;
Molecular Docking Simulation
;
Behavior, Animal/drug effects*
;
Disease Models, Animal
7.Congrong San ameliorates cognitive impairment and neuroinflammation in rat model of Alzheimer's disease by alleviating endoplasmic reticulum stress to inhibit NLRP3 inflammasome activation.
Yuan-Qin CAI ; Yang XIANG ; Qing-Hua LONG ; Xi WANG ; Chu-Hua ZENG
China Journal of Chinese Materia Medica 2025;50(7):1881-1888
This study aims to investigate the effect of Congrong San(CRS) on endoplasmic reticulum stress-induced neuroinflammation in the rat model of Aβ_(1-42)-induced Alzheimer's disease(AD). Sixty male Sprague-Dawley rats(2 months old) were randomized into blank(CON), model(MOD), low-dose Congrong San(L-CRS), medium-dose Congrong San(M-CRS), high-dose Congrong San(H-CRS), and memantine hydrochloride(MJG) groups. The Morris water maze test was carried out to examine the learning and memory abilities of rats in each group. Hematoxylin-eosin staining and Nissl staining were employed to observe the morphology and number of CA1 neurons in the hippocampus of rats in each group. The morphology and structure of the endoplasmic reticulum in the hippocampus were observed by transmission electron microscopy. The immunofluorescence assay was employed to detect the expression of 78 kDa glucose-regulated protein(GRP78) in the hippocampus. Western blot was employed to determine the expression of apoptosis-associated speck-like protein containing a CARD(ASC), cysteinyl aspartate-specific proteinase(caspase-1), interleukin-18(IL-18), interleukin-1β(IL-1β), GRP78, and pathway proteins including protein kinase RNA-like endoplasmic reticulum kinase(PERK), phosphorylated PERK(p-PERK), C/EBP homologous protein(CHOP), and NOD-like receptor pyrin domain-containing protein 3(NLRP3) in the rat hippocampus. Compared with the MOD group, the M-CRS and H-CRS groups showed improved learning and memory abilities, reduced neuron losses in the hippocampus, alleviated endoplasmic reticulum stress, inhibited PERK-CHOP-NLRP3 pathway, and lowered levels of IL-1β, IL-6, and tumor necrosis factor-alpha(TNF-α). The results suggest that CRS can alleviate cognitive impairment and hippocampal neuron damage and reduce neuroinflammation in AD rats by alleviating endoplasmic reticulum stress to inhibit the activation of NLRP3 inflammasomes.
Animals
;
Endoplasmic Reticulum Stress/drug effects*
;
Male
;
Alzheimer Disease/psychology*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Rats, Sprague-Dawley
;
Rats
;
Inflammasomes/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Cognitive Dysfunction/metabolism*
;
Disease Models, Animal
;
Hippocampus/drug effects*
;
Humans
;
Neuroinflammatory Diseases/drug therapy*
8.Multifaceted mechanisms of Danggui Shaoyao San in ameliorating Alzheimer's disease based on transcriptomics and metabolomics.
Min-Hao YAN ; Han CAI ; Hai-Xia DING ; Shi-Jie SU ; Xu-Nuo LI ; Zi-Qiao XU ; Wei-Cheng FENG ; Qi-Qing WU ; Jia-Xin CHEN ; Hong WANG ; Qi WANG
China Journal of Chinese Materia Medica 2025;50(8):2229-2236
This study explored the potential therapeutic targets and mechanisms of Danggui Shaoyao San(DSS) in the prevention and treatment of Alzheimer's disease(AD) through transcriptomics and metabolomics, combined with animal experiments. Fifty male C57BL/6J mice, aged seven weeks, were randomly divided into the following five groups: control, model, positive drug, low-dose DSS, and high-dose DSS groups. After the intervention, the Morris water maze was used to assess learning and memory abilities of mice, and Nissl staining and hematoxylin-eosin(HE) staining were performed to observe pathological changes in the hippocampal tissue. Transcriptomics and metabolomics were employed to sequence brain tissue and identify differential metabolites, analyzing key genes and metabolites related to disease progression. Reverse transcription-quantitative polymerase chain reaction(RT-qPCR) was employed to validate the expression of key genes. The Morris water maze results indicated that DSS significantly improved learning and cognitive function in scopolamine(SCOP)-induced model mice, with the high-dose DSS group showing the best results. Pathological staining showed that DSS effectively reduced hippocampal neuronal damage, increased Nissl body numbers, and reduced nuclear pyknosis and neuronal loss. Transcriptomics identified seven key genes, including neurexin 1(Nrxn1) and sodium voltage-gated channel α subunit 1(Scn1a), and metabolomics revealed 113 differential metabolites, all of which were closely associated with synaptic function, oxidative stress, and metabolic regulation. RT-qPCR experiments confirmed that the expression of these seven key genes was consistent with the transcriptomics results. This study suggests that DSS significantly improves learning and memory in SCOP model mice and alleviates hippocampal neuronal pathological damage. The mechanisms likely involve the modulation of synaptic function, reduction of oxidative stress, and metabolic balance, with these seven key genes serving as important targets for DSS in the treatment of AD.
Animals
;
Alzheimer Disease/genetics*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Mice, Inbred C57BL
;
Metabolomics
;
Transcriptome/drug effects*
;
Maze Learning/drug effects*
;
Hippocampus/metabolism*
;
Humans
;
Disease Models, Animal
;
Memory/drug effects*
9.Mechanism of Hippocampus in treatment of knee osteoarthritis based on network pharmacology, molecular docking, and experimental verification.
Tao ZHUO ; Guo-Wei WANG ; Si-Xian WU ; Quan-Wei ZHENG ; Yi HE ; Jian-Hang LIU
China Journal of Chinese Materia Medica 2025;50(14):4026-4036
This study predicts the potential mechanism of Hippocampus in the treatment of knee osteoarthritis(KOA) through network pharmacology, with preliminary verification using molecular docking and animal experiments. The database was used to screen the active chemical components of Hippocampus and the targets of KOA, and Gene Ontology(GO) functional analysis, Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis, and molecular docking were performed on the relevant core targets to preliminarily explore the potential targets and mechanisms of Hippocampus in the treatment of KOA. A rat KOA model was constructed by intra-articular injection of sodium iodoacetate, and the rats were intervened with different doses of Hippocampus decoction and celecoxib. The expression of relevant targets was detected through hematoxylin-eosin(HE) staining, enzyme-linked immunosorbent assay(ELISA), RT-qPCR, and Western blot to further validate the network pharmacology results. A total of 23 drug-like components of the Hippocampus were screened, and 128 common targets with KOA were identified, involving interleukin-17(IL-17) signaling pathway, transcription factor(FoxO) signaling pathway, tumor necrosis factor(TNF) signaling pathway. Molecular docking results showed that the screened core chemical components exhibited good affinity with key targets. HE staining demonstrated that Hippocampus improved the morphology of the cartilage layer. ELISA confirmed that Hippocampus significantly reduced the levels of IL-6 and TNF-α in the serum of KOA rats. Western blot and RT-qPCR analysis showed that Hippocampus significantly reduced the expression of IL-6, TNF-α, matrix metalloproteinase(MMP) 13, IL-17A, nuclear factor κB activator 1(ACT1), tumor necrosis factor receptor-associated factor 6(TRAF6) and nuclear factor κB(NF-κB) in cartilage tissue. The results suggest that Hippocampus can alleviate the degree of joint damage in the KOA rat model induced by sodium iodoacetate. The mechanism of action is related to the inhibition of the IL-17 signaling pathway, reduction of inflammation, and inhibition of extracellular matrix(ECM) degradation.
Animals
;
Molecular Docking Simulation
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Network Pharmacology
;
Male
;
Osteoarthritis, Knee/metabolism*
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
Humans
;
Interleukin-17/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Disease Models, Animal
;
Hippocampus/chemistry*
10.Characterization of hippocampal components of Danzhi Xiaoyao Formula based on HPLC-Q-TOF-MS/MS and network pharmacology and assessment of its therapeutic potential for nervous system diseases.
Wen-Qing HU ; Hui-Yuan GAO ; Li YANG ; Yu-Xin WANG ; Hao-Jie CHENG ; Si-Yu YANG ; Mei-Yu ZHANG ; Jian SUN
China Journal of Chinese Materia Medica 2025;50(14):4053-4062
In this study, the pharmacodynamic components and potential pharmacological functions of Danzhi Xiaoyao Formula in treating nervous system diseases were investigated by hippocampal component characterization and network pharmacology. After rats were administrated with Danzhi Xiaoyao Formula by gavage, high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry(HPLC-Q-TOF-MS/MS) was employed to explore the components in the hippocampus of rats. Fifty-seven components were identified in the hippocampus of rats by comparing the extract of Danzhi Xiaoyao Formula, herbal components in the hippocampus after administration, and blank samples. KEGG and GO analyses predicted 74 core targets including GSK3B, MAPK1, AKT, IL6. These targets were involved in PI3K/Akt, NF-κB, MAPK, JAK/STAT, Wnt, and other signaling pathways. The results indicated that Danzhi Xiaoyao Formula may ameliorate other nervous system diseases enriched in DO, such as neurodegenerative diseases, cerebrovascular diseases, and mental and emotional disorders by mediating target pathways, inhibiting inflammation, reducing neuronal damage, and alleviating hippocampal atrophy. The relevant activities exhibited by this formula in nervous system diseases such as Alzheimer's disease, Parkinson's disease, and diabetic neuropathy have extremely high development value and are worthy of further in-depth research. This study provides a theoretical basis and practical guidance for expanding the application of Danzhi Xiaoyao Formula in the treatment of nervous system diseases.
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Rats
;
Hippocampus/metabolism*
;
Network Pharmacology
;
Chromatography, High Pressure Liquid
;
Tandem Mass Spectrometry
;
Rats, Sprague-Dawley
;
Male
;
Nervous System Diseases/genetics*
;
Humans
;
Signal Transduction/drug effects*

Result Analysis
Print
Save
E-mail