1.Effect of electroacupuncture at different frequencies on brain insulin signaling transduction pathway in Alzheimer's disease mice.
Ming-Xuan HUO ; Qian WANG ; Rui-Qing ZHAO ; Yi-Ru LIN ; Bo FENG
Chinese Acupuncture & Moxibustion 2023;43(1):60-66
OBJECTIVE:
To observe the effect of electroacupuncture (EA) at different frequencies on learning and memory functions, as well as the relevant proteins of brain insulin signal transduction pathway in Alzheimer's disease (AD) mice and explore the effect mechanism of EA in treatment of AD.
METHODS:
Seventy-two SPF Kunming male mice were randomized into a blank group, a sham-operation group, a model group, a 2 Hz EA group, a 15 Hz EA group and a 30 Hz EA group, 12 mice in each one. In the model group and each EA group, AD model were established by the injection with streptozotocin (ST2) solution (8 mg/kg) into the left lateral ventricles. In the sham-operation group, 0.9% sodium chloride solution of the same volume was injected into the left lateral ventricles. After successful modeling, in each EA group, EA was applied at "Baihui" (GV 20), "Dazhui" (GV 14) and "Shenshu" (BL 23) with corresponding frequencies, once daily. One course of EA intervention consisted of 7 treatments and 2 courses were given totally at interval of 1 day. After modeling and intervention, Morris water maze test was conducted for the mice of each group. Using immunohistochemistry and Western blot method, the protein expression of insulin receptor (IR), insulin receptor substrate-1 (IRS-1) and phosphatidylinositol 3-kinase (PI3K) was detected in the hippocampal of the mice after intervention.
RESULTS:
Compared with the blank group, in the model group, the 2 Hz, 15 Hz and 30 Hz EA groups, the escape latency and the first time of crossing the platform were all extended (P<0.01), and the number of crossing the platform was reduced (P<0.01) after modeling. When compared with the blank group, the escape latency and the first time of crossing the platform were all extended (P<0.01), and the number of crossing the platform was reduced (P<0.01) in the model group after intervention. In the 2 Hz, 15 Hz and 30 Hz EA groups, the escape latency and the first time of crossing the platform were all shortened (P<0.01), and the number of crossing the platform was increased (P<0.05, P<0.01) after intervention when compared with the model group. The escape latency and the first time of crossing the platform were all shortened (P<0.01, P<0.05), and the number of crossing the platform was increased (P<0.05) in the 15 Hz and 30 Hz EA groups in comparison with the 2 Hz EA group. The protein expression levels of IR, IRS-1 and PI3K were reduced in the model group when compared with those of the blank group (P<0.01, P<0.05); and these protein expression levels were increased in the 15 Hz and 30 Hz EA groups compared with the model group (P<0.05, P<0.01). Compared with the 2 Hz EA group, the protein expression levels of IR, IRS-1 and PI3K were all elevated in the 15 Hz and 30 Hz EA groups (P<0.05).
CONCLUSION
The learning and memory function of AD mice may be improved through regulating brain insulin signaling transconduction pathway with electroacupuncture, and electroacupuncture at 15 Hz and 30 Hz obtains the overall better effect compared with the intervention at 2 Hz.
Animals
;
Male
;
Mice
;
Alzheimer Disease/therapy*
;
Electroacupuncture
;
Hippocampus/metabolism*
;
Insulin/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Signal Transduction
2.TRPV4-induced Neurofilament Injury Contributes to Memory Impairment after High Intensity and Low Frequency Noise Exposures.
Yang YANG ; Ju WANG ; Yu Lian QUAN ; Chuan Yan YANG ; Xue Zhu CHEN ; Xue Jiao LEI ; Liang TAN ; Hua FENG ; Fei LI ; Tu Nan CHEN
Biomedical and Environmental Sciences 2023;36(1):50-59
OBJECTIVE:
Exposure to high intensity, low frequency noise (HI-LFN) causes vibroacoustic disease (VAD), with memory deficit as a primary non-auditory symptomatic effect of VAD. However, the underlying mechanism of the memory deficit is unknown. This study aimed to characterize potential mechanisms involving morphological changes of neurons and nerve fibers in the hippocampus, after exposure to HI-LFN.
METHODS:
Adult wild-type and transient receptor potential vanilloid subtype 4 knockout (TRPV4-/-) mice were used for construction of the HI-LFN injury model. The new object recognition task and the Morris water maze test were used to measure the memory of these animals. Hemoxylin and eosin and immunofluorescence staining were used to examine morphological changes of the hippocampus after exposure to HI-LFN.
RESULTS:
The expression of TRPV4 was significantly upregulated in the hippocampus after HI-LFN exposure. Furthermore, memory deficits correlated with lower densities of neurons and neurofilament-positive nerve fibers in the cornu ammonis 1 (CA1) and dentate gyrus (DG) hippocampal areas in wild-type mice. However, TRPV4-/- mice showed better performance in memory tests and more integrated neurofilament-positive nerve fibers in the CA1 and DG areas after HI-LFN exposure.
CONCLUSION
TRPV4 up-regulation induced neurofilament positive nerve fiber injury in the hippocampus, which was a possible mechanism for memory impairment and cognitive decline resulting from HI-LFN exposure. Together, these results identified a promising therapeutic target for treating cognitive dysfunction in VAD patients.
Animals
;
Mice
;
TRPV Cation Channels/metabolism*
;
Intermediate Filaments/metabolism*
;
Hippocampus/metabolism*
;
Neurons/metabolism*
;
Memory Disorders/metabolism*
3.Meranzin Hydrate Improves Depression-Like Behaviors and Hypomotility via Ghrelin and Neurocircuitry.
Ya-Lin LIU ; Jian-Jun XU ; Lin-Ran HAN ; Xiang-Fei LIU ; Mu-Hai LIN ; Yun WANG ; Zhe XIAO ; Yun-Ke HUANG ; Ping REN ; Xi HUANG
Chinese journal of integrative medicine 2023;29(6):490-499
OBJECTIVE:
To investigate whether meranzin hydrate (MH) can alleviate depression-like behavior and hypomotility similar to Chaihu Shugan Powder (CSP), and further explore the potential common mechanisms.
METHODS:
Totally 120 Spraque-Dawley rats were randomly divided into 5-8 groups including sham, vehicle, fluoxetine (20 mg/kg), mosapride (10 mg/kg), CSP (30 g/kg), MH (9.18 mg/kg), [D-Lys3]-GHRP-6 (Dlys, 0.5 mg/kg), and MH+Dlys groups by a random number table, 8 rats in each group. And 32 mice were randomly divided into wild-type, MH (18 mg/kg), growth hormone secretagogue receptor-knockout (GHSR-KO), and GHSR+MH groups, 8 mice in each group. The forced swimming test (FST), open field test (OFT), tail suspension test (TST), gastric emptying (GE) test, and intestinal transit (IT) test were used to assess antidepressant and prokinetic (AP) effects after drug single administration for 30 min with absorbable identification in rats and mice, respectively. The protein expression levels of brain-derived neurotrophic factor (BDNF) and phosphorylated mammalian target of rapamycin (p-mTOR) in the hippocampus of rats were evaluated by Western blot. The differences in functional brain changes were determined via 7.0 T functional magnetic resonance imaging-blood oxygen level-dependent (fMRI-BOLD).
RESULTS:
MH treatment improved depression-like behavior (FST, OFT) and hypomotility (GE, IT) in the acute forced swimming (FS) rats (all P<0.05), and the effects are similar to the parent formula CSP. The ghrelin antagonist [D-Lys3]-GHRP-6 inhibited the effect of MH on FST and GE (P<0.05). Similarly, MH treatment also alleviated depression-like behavior (FST, TST) in the wild-type mice, however, no effects were found in the GHSR KO mice. Additionally, administration of MH significantly stimulated BDNF and p-mTOR protein expressions in the hippocampus (both P<0.01), which were also prevented by [D-Lys3]-GHRP-6 (P<0.01). Besides, 3 main BOLD foci following acute FS rats implicated activity in hippocampus-thalamus-basal ganglia (HTB) circuits. The [D-Lys3]-GHRP-6 synchronously inhibited BOLD HTB foci. As expected, prokinetic mosapride only had effects on the thalamus and basal ganglia, but not on the hippocampus. Within the HTB, the hippocampus is implicated in depression and FD.
CONCLUSIONS
MH accounts for part of AP effects of parent formula CSP in acute FS rats, mainly via ghrelin-related shared regulation coupled to BOLD signals in brain areas. This novel functionally connection of HTB following acute stress, treatment, and regulation highlights anti-depression unified theory.
Rats
;
Mice
;
Animals
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Ghrelin/metabolism*
;
Antidepressive Agents/therapeutic use*
;
Hippocampus
;
Stress, Psychological
;
Mammals/metabolism*
4.Baicalin Ameliorates Corticosterone-Induced Depression by Promoting Neurodevelopment of Hippocampal via mTOR/GSK3β Pathway.
Zhe WANG ; Ya-Ting CHENG ; Ye LU ; Guo-Qiang SUN ; Lin PEI
Chinese journal of integrative medicine 2023;29(5):405-412
OBJECTIVE:
To investigate the role of hippocampal neurodevelopment in the antidepressant effect of baicalin.
METHODS:
Forty male Institute of Cancer Research mice were divided into control, corticosterone (CORT, 40 mg/kg), CORT+baicalin-L (25 mg/kg), CORT+baicalin-H (50 mg/kg), and CORT+fluoxetine (10 mg/kg) groups according to a random number table. An animal model of depression was established by chronic CORT exposure. Behavioral tests were used to assess the reliability of depression model and the antidepressant effect of baicalin. In addition, Nissl staining and immunofluorescence were used to evaluate the effect of baicalin on hippocampal neurodevelopment in mice. The protein and mRNA expression levels of neurodevelopment-related factors were detected by Western blot analysis and real-time polymerase chain reaction, respectively.
RESULTS:
Baicalin significantly ameliorated the depressive-like behavior of mice resulting from CORT exposure and promoted the development of dentate gyrus in hippocampus, thereby reversing the depressive-like pathological changes in hippocampal neurons caused by CORT neurotoxicity. Moreover, baicalin significantly decreased the protein and mRNA expression levels of glycogen synthase kinase 3β (GSK3β), and upregulated the expression levels of cell cycle protein D1, p-mammalian target of rapamycin (mTOR), doublecortin, and brain-derived neurotrophic factor (all P<0.01). There were no significant differences between baicalin and fluoxetine groups (P>0.05).
CONCLUSION
Baicalin can promote the development of hippocampal neurons via mTOR/GSK3β signaling pathway, thus protect mice against CORT-induced neurotoxicity and play an antidepressant role.
Male
;
Animals
;
Mice
;
Corticosterone
;
Fluoxetine/metabolism*
;
Depression/chemically induced*
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Reproducibility of Results
;
Antidepressive Agents/pharmacology*
;
Hippocampus
;
TOR Serine-Threonine Kinases/metabolism*
;
RNA, Messenger/genetics*
;
Behavior, Animal
;
Disease Models, Animal
;
Mammals/metabolism*
5.Electroacupuncture Improves Blood-Brain Barrier and Hippocampal Neuroinflammation in SAMP8 Mice by Inhibiting HMGB1/TLR4 and RAGE/NADPH Signaling Pathways.
Yuan WANG ; Qiang WANG ; Di LUO ; Pu ZHAO ; Sha-Sha ZHONG ; Biao DAI ; Jia-Jyu WANG ; Yi-Tong WAN ; Zhi-Bin LIU ; Huan YANG
Chinese journal of integrative medicine 2023;29(5):448-458
OBJECTIVE:
To investigate the molecular mechanisms underlying the beneficial effect of electroacupuncture (EA) in experimental models of Alzheimer's disease (AD) in vivo.
METHODS:
Senescence-accelerated mouse prone 8 (SAMP8) mice were used as AD models and received EA at Yingxiang (LI 20, bilateral) and Yintang (GV 29) points for 20 days. For certain experiments, SAMP8 mice were injected intravenously with human fibrin (2 mg). The Morris water maze test was used to assess cognitive and memory abilities. The changes of tight junctions of blood-brain barrier (BBB) in mice were observed by transmission electron microscope. The expressions of fibrin, amyloid- β (Aβ), and ionized calcium-binding adapter molecule 1 (IBa-1) in mouse hippocampus (CA1/CA3) were detected by reverse transcription-quantitative polymerase chain reaction (qRT-PCR), Western blot or immunohistochemical staining. The expression of fibrin in mouse plasma was detected by enzyme-linked immunosorbent assay. The expressions of tight junction proteins zonula occludens-1 and claudin-5 in hippocampus were detected by qRT-PCR and immunofluorescence staining. Apoptosis of hippocampal neurons was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining.
RESULTS:
Fibrin was time-dependently deposited in the hippocampus of SAMP8 mice and this was inhibited by EA treatment (P<0.05 or P<0.01). Furthermore, EA treatment suppressed the accumulation of Aβ in the hippocampus of SAMP8 mice (P<0.01), which was reversed by fibrin injection (P<0.05 or P<0.01). EA improved SAMP8 mice cognitive impairment and BBB permeability (P<0.05 or P<0.01). Moreover, EA decreased reactive oxygen species levels and neuroinflammation in the hippocampus of SAMP8 mice, which was reversed by fibrin injection (P<0.05 or P<0.01). Mechanistically, EA inhibited the promoting effect of fibrin on the high mobility group box protein 1 (HMGB1)/toll-like receptor 4 (TLR4) and receptor for advanced glycation end products (RAGE)/nicotinamide adenine dinucleotide phosphate (NADPH) signaling pathways (P<0.01).
CONCLUSION
EA may potentially improve cognitive impairment in AD via inhibition of fibrin/A β deposition and deactivation of the HMGB1/TLR4 and RAGE/NADPH signaling pathways.
Mice
;
Humans
;
Animals
;
NADP/metabolism*
;
Toll-Like Receptor 4
;
HMGB1 Protein/metabolism*
;
Receptor for Advanced Glycation End Products/metabolism*
;
Blood-Brain Barrier/metabolism*
;
Neuroinflammatory Diseases
;
Electroacupuncture
;
Alzheimer Disease/therapy*
;
Hippocampus/metabolism*
;
Amyloid beta-Peptides/metabolism*
6.Basal Forebrain Cholinergic Innervation Induces Depression-Like Behaviors Through Ventral Subiculum Hyperactivation.
Nana YU ; Huina SONG ; Guangpin CHU ; Xu ZHAN ; Bo LIU ; Yangling MU ; Jian-Zhi WANG ; Yisheng LU
Neuroscience Bulletin 2023;39(4):617-630
Malfunction of the ventral subiculum (vSub), the main subregion controlling the output connections from the hippocampus, is associated with major depressive disorder (MDD). Although the vSub receives cholinergic innervation from the medial septum and diagonal band of Broca (MSDB), whether and how the MSDB-to-vSub cholinergic circuit is involved in MDD is elusive. Here, we found that chronic unpredictable mild stress (CUMS) induced depression-like behaviors with hyperactivation of vSub neurons, measured by c-fos staining and whole-cell patch-clamp recording. By retrograde and anterograde tracing, we confirmed the dense MSDB cholinergic innervation of the vSub. In addition, transient restraint stress in CUMS increased the level of ACh in the vSub. Furthermore, chemogenetic stimulation of this MSDB-vSub innervation in ChAT-Cre mice induced hyperactivation of vSub pyramidal neurons along with depression-like behaviors; and local infusion of atropine, a muscarinic receptor antagonist, into the vSub attenuated the depression-like behaviors induced by chemogenetic stimulation of this pathway and CUMS. Together, these findings suggest that activating the MSDB-vSub cholinergic pathway induces hyperactivation of vSub pyramidal neurons and depression-like behaviors, revealing a novel circuit underlying vSub pyramidal neuronal hyperactivation and its associated depression.
Rats
;
Mice
;
Animals
;
Rats, Sprague-Dawley
;
Depressive Disorder, Major/metabolism*
;
Basal Forebrain
;
Depression
;
Hippocampus/metabolism*
;
Cholinergic Agents
7.Chromatin Remodeling Factor SMARCA5 is Essential for Hippocampal Memory Maintenance via Metabolic Pathways in Mice.
Yu QU ; Nan ZHOU ; Xia ZHANG ; Yan LI ; Xu-Feng XU
Neuroscience Bulletin 2023;39(7):1087-1104
Gene transcription and new protein synthesis regulated by epigenetics play integral roles in the formation of new memories. However, as an important part of epigenetics, the function of chromatin remodeling in learning and memory has been less studied. Here, we showed that SMARCA5 (SWI/SNF related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 5), a critical chromatin remodeler, was responsible for hippocampus-dependent memory maintenance and neurogenesis. Using proteomics analysis, we found protein expression changes in the hippocampal dentate gyrus (DG) after the knockdown of SMARCA5 during contextual fear conditioning (CFC) memory maintenance in mice. Moreover, SMARCA5 was revealed to participate in CFC memory maintenance via modulating the proteins of metabolic pathways such as nucleoside diphosphate kinase-3 (NME3) and aminoacylase 1 (ACY1). This work is the first to describe the role of SMARCA5 in memory maintenance and to demonstrate the involvement of metabolic pathways regulated by SMARCA5 in learning and memory.
Mice
;
Animals
;
Memory
;
Chromatin Assembly and Disassembly
;
Hippocampus/metabolism*
;
Transcription Factors/metabolism*
;
Chromatin/metabolism*
;
Metabolic Networks and Pathways
8.Physiological Roles of β-amyloid in Regulating Synaptic Function: Implications for AD Pathophysiology.
Wenwen CAI ; Linxi LI ; Shaoming SANG ; Xiaoli PAN ; Chunjiu ZHONG
Neuroscience Bulletin 2023;39(8):1289-1308
The physiological functions of endogenous amyloid-β (Aβ), which plays important role in the pathology of Alzheimer's disease (AD), have not been paid enough attention. Here, we review the multiple physiological effects of Aβ, particularly in regulating synaptic transmission, and the possible mechanisms, in order to decipher the real characters of Aβ under both physiological and pathological conditions. Some worthy studies have shown that the deprivation of endogenous Aβ gives rise to synaptic dysfunction and cognitive deficiency, while the moderate elevation of this peptide enhances long term potentiation and leads to neuronal hyperexcitability. In this review, we provide a new view for understanding the role of Aβ in AD pathophysiology from the perspective of physiological meaning.
Humans
;
Alzheimer Disease/pathology*
;
Amyloid beta-Peptides/metabolism*
;
Long-Term Potentiation
;
Synaptic Transmission/physiology*
;
Hippocampus
9.Tu-Xian Decoction ameliorates diabetic cognitive impairment by inhibiting DAPK-1.
Danyang WANG ; Bin YAN ; An WANG ; Qing SUN ; Junyi PANG ; Yangming CUI ; Guoqing TIAN
Chinese Journal of Natural Medicines (English Ed.) 2023;21(12):950-960
Tu-Xian decoction (TXD), a traditional Chinese medicine (TCM) formula, has been frequently administered to manage diabetic cognitive impairment (DCI). Despite its widespread use, the mechanisms underlying TXD's protective effects on DCI have yet to be fully elucidated. As a significant regulator in neurodegenerative conditions, death-associated protein kinase-1 (DAPK-1) serves as a focus for understanding the action of TXD. This study was designed to whether TXD mediates its beneficial outcomes by inhibiting DAPK-1. To this end, a diabetic model was established using Sprague-Dawley (SD) rats through a high-fat, high-sugar (HFHS) diet regimen, followed by streptozotocin (STZ) injection. The experimental cohort was stratified into six groups: Control, Diabetic, TC-DAPK6, high-dose TXD, medium-dose TXD, and low-dose TXD groups. Following a 12-week treatment period, various assessments-including blood glucose levels, body weight measurements, Morris water maze (MWM) testing for cognitive function, brain magnetic resonance imaging (MRI), and histological analyses using hematoxylin-eosin (H&E), and Nissl staining-were conducted. Protein expression in the hippocampus was quantified through Western blotting analysis. The results revealed that TXD significantly improved spatial learning and memory abilities, and preserved hippocampal structure in diabetic rats. Importantly, TXD administration led to a down-regulation of proteins indicative of neurological damage and suppressed DAPK-1 activity within the hippocampal region. These results underscore TXD's potential in mitigating DCIvia DAPK-1 inhibition, positioning it as a viable therapeutic candidate for addressing this condition. Further investigation into TXD's molecular mechanisms may elucidate new pathways for the treatment of DCI.
Animals
;
Rats
;
Brain/metabolism*
;
Cognitive Dysfunction/drug therapy*
;
Diabetes Mellitus, Experimental/metabolism*
;
Hippocampus
;
Rats, Sprague-Dawley
10.Antidepressant mechanism of Shenling Kaixin Granules based on BDNF/TrkB/CREB pathway.
Yan XU ; Dong-Guang LIU ; Ting-Bo NING ; Jian-Guo ZHU ; Ru YAO ; Xue MENG ; Jing-Chun YAO ; Wen-Xue ZHAO
China Journal of Chinese Materia Medica 2023;48(8):2184-2192
To investigate the antidepressant mechanism of Shenling Kaixin Granules(SLKX) in treating chronic unpredictable mild stress(CUMS) model rats. Ninety male SD rats were randomly divided into control group, model group, Shugan Jieyu Capsules(110 mg·kg~(-1)) group and SLKX low-(90 mg·kg~(-1)), medium-(180 mg·kg~(-1)), and high-dose(360 mg·kg~(-1)) groups. Depression rat model was replicated by CUMS method. After treatment, the behavioral changes of rats were evaluated by sugar preference, open field, elevated cross maze and forced swimming experiments. The contents of interleukin 1 beta(IL-1β), tumor necrosis factor α(TNF-α), brain-derived neurotrophic factor(BDNF) and 5-hydroxytryptamine(5-HT) in serum were determined by enzyme linked immunosorbent assay(ELISA), and the activities of superoxide dismutase(SOD) and catalase(CAT) in hippocampal CA1 region were also detected. Pathological changes in hippocampal CA1 region were detected by hematoxylin-eosin(HE) staining, and Western blot was used to determine the expression of nerve growth factor(NGF), BDNF, phospho-tyrosine kinase receptor(p-TrkB)/TrkB, phospho-cAMP-response element binding protein(p-CREB)/CREB, nuclear factor E2 related factor 2(Nrf2), heme oxygenase 1(HO-1), B-cell lymphoma-2(Bcl-2)/Bcl-2 associated X protein(Bax) and caspase-3 in hippocampal CA1 region. RESULTS:: showed that compared with the control group, the model group had decreased sugar preference, reduced number of entries and time spent in the center of open field and shortened total distance of movement, reduced number of entries and proportion of time spent in open arm, and increased number and time of immobility in forced swimming experiment. Additionally, the serum contents of IL-1β and TNF-α and the expression of caspase-3 were higher, while the contents of BDNF and 5-HT, the activities of SOD and CAT in hippocampal CA1 region, the expressions of NGF, BDNF, p-TrkB/TrkB, p-CREB/CREB, HO-1 and Bcl-2/Bax, and the Nrf2 nuclear translocation were lower in model group than in control group. Compared with the conditions in model group, the sugar preference, the number of entries and time spent in the center of open, total distance of movement, and the number of entries and proportion of time spent in open arm in treatment groups were increased while the number and time of immobility in forced swimming experiment were decreased; the serum contents of IL-1β and TNF-α and the expression of caspase-3 were down regulated, while the contents of BDNF and 5-HT, the activities of SOD and CAT in hippocampal CA1 region, the expressions of NGF, BDNF, p-TrkB/TrkB, p-CREB/CREB, HO-1, Bcl-2/Bax, and Nrf2 nuclear translocation were enhanced. In conclusion, SLKX might regulate the Nrf2 nucleus translocation by activating BDNF/TrkB/CREB pathway, lower oxidative stress damage in hippocampus, inhibit caspase-3 activity, and reduce apoptosis of hippocampal nerve cells, thereby playing an antidepressant role.
Rats
;
Male
;
Animals
;
bcl-2-Associated X Protein/metabolism*
;
Caspase 3/metabolism*
;
Nerve Growth Factor/metabolism*
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Signal Transduction
;
Tumor Necrosis Factor-alpha/metabolism*
;
Serotonin/metabolism*
;
NF-E2-Related Factor 2/metabolism*
;
Rats, Sprague-Dawley
;
Antidepressive Agents/pharmacology*
;
Hippocampus/metabolism*
;
Superoxide Dismutase/metabolism*
;
Sugars/pharmacology*
;
Depression/genetics*
;
Stress, Psychological/metabolism*

Result Analysis
Print
Save
E-mail