1.Circulating tumor DNA- and cancer tissue-based next-generation sequencing reveals comparable consistency in targeted gene mutations for advanced or metastatic non-small cell lung cancer.
Weijia HUANG ; Kai XU ; Zhenkun LIU ; Yifeng WANG ; Zijia CHEN ; Yanyun GAO ; Renwang PENG ; Qinghua ZHOU
Chinese Medical Journal 2025;138(7):851-858
BACKGROUND:
Molecular subtyping is an essential complementarity after pathological analyses for targeted therapy. This study aimed to investigate the consistency of next-generation sequencing (NGS) results between circulating tumor DNA (ctDNA)-based and tissue-based in non-small cell lung cancer (NSCLC) and identify the patient characteristics that favor ctDNA testing.
METHODS:
Patients who diagnosed with NSCLC and received both ctDNA- and cancer tissue-based NGS before surgery or systemic treatment in Lung Cancer Center, Sichuan University West China Hospital between December 2017 and August 2022 were enrolled. A 425-cancer panel with a HiSeq 4000 NGS platform was used for NGS. The unweighted Cohen's kappa coefficient was employed to discriminate the high-concordance group from the low-concordance group with a cutoff value of 0.6. Six machine learning models were used to identify patient characteristics that relate to high concordance between ctDNA-based and tissue-based NGS.
RESULTS:
A total of 85 patients were enrolled, of which 22.4% (19/85) had stage III disease and 56.5% (48/85) had stage IV disease. Forty-four patients (51.8%) showed consistent gene mutation types between ctDNA-based and tissue-based NGS, while one patient (1.2%) tested negative in both approaches. Patients with advanced diseases and metastases to other organs would be suitable for the ctDNA-based NGS, and the generalized linear model showed that T stage, M stage, and tumor mutation burden were the critical discriminators to predict the consistency of results between ctDNA-based and tissue-based NGS.
CONCLUSION
ctDNA-based NGS showed comparable detection performance in the targeted gene mutations compared with tissue-based NGS, and it could be considered in advanced or metastatic NSCLC.
Humans
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Circulating Tumor DNA/blood*
;
High-Throughput Nucleotide Sequencing/methods*
;
Female
;
Male
;
Lung Neoplasms/pathology*
;
Middle Aged
;
Mutation/genetics*
;
Aged
;
Adult
;
Aged, 80 and over
2.Neoantigen-driven personalized tumor therapy: An update from discovery to clinical application.
Na XIE ; Guobo SHEN ; Canhua HUANG ; Huili ZHU
Chinese Medical Journal 2025;138(17):2057-2090
Neoantigens exhibit high immunogenic potential and confer a uniqueness to tumor cells, making them ideal targets for personalized cancer immunotherapy. Neoantigens originate from tumor-specific genetic alterations, abnormal viral infections, or other biological mechanisms, including atypical RNA splicing events and post-translational modifications (PTMs). These neoantigens are recognized as foreign by the immune system, eliciting an immune response that largely bypasses conventional mechanisms of central and peripheral tolerance. Advances in next-generation sequencing (NGS), mass spectrometry (MS), and artificial intelligence (AI) have greatly expedited the rapid detection and forecasting of neoantigens, markedly propelling the development of diverse immunotherapeutic strategies, including cancer vaccines, adoptive cell therapy, and antibody treatment. In this review, we comprehensively explore the discovery and characterization of neoantigens and their clinical use within promising immunotherapeutic frameworks. Additionally, we address the current landscape of neoantigen research, the intrinsic challenges of the field, and potential pathways for clinical application in cancer treatment.
Humans
;
Neoplasms/therapy*
;
Precision Medicine/methods*
;
Immunotherapy/methods*
;
Antigens, Neoplasm/genetics*
;
Cancer Vaccines/immunology*
;
High-Throughput Nucleotide Sequencing
4.In-depth identification of para-Bombay blood type in cancer patients using third-generation sequencing technology.
Na WANG ; Xiurong YU ; Yujuan CHEN
Chinese Journal of Cellular and Molecular Immunology 2025;41(2):148-153
Objective To precisely identify the para-Bombay blood types in cancer patients at our hospital, establish a robust system for the identification of challenging blood types in our laboratory, and provide a foundation for precise transfusion practices. Methods We retrospectively analyzed the blood type results of 91 874 cancer patients from January 1, 2019, to December 31, 2023. Conventional serological methods were used to screen for blood types, and suspected para-Bombay blood types were identified. Further analysis was performed using Pacific Biosciences (PacBio) single-molecule real-time sequencing and Sanger sequencing was used to determine the genotypes of the ABO, FUT1, and FUT2 genes. Results Eight cases of para-Bombay blood type were confirmed through serological and molecular biological methods. The FUT1 genotypes identified were: 5 cases of h1h1 (homozygous mutation 551_552delAG) and 3 cases of h1h2 (compound heterozygous mutations of 551_552delAG and 880_882delTT). The FUT2 genotypes identified were: 2 cases of Se357/Se357, 716 and 4 cases of Se357/Se357. Additionally, one sample revealed a novel heterozygous mutation, 818C>T, in exon 7 of the ABO gene, which was confirmed by PacBio sequencing to be located on the O haplotype. Conclusion PacBio sequencing technology demonstrates significant advantages in analyzing the haplotypes of para-Bombay blood type genes. This approach supports the establishment of a robust system for the identification of challenging blood types and provides novel evidence for precise transfusion practices in cancer patients.
Humans
;
Neoplasms/genetics*
;
Fucosyltransferases/genetics*
;
ABO Blood-Group System/genetics*
;
Male
;
High-Throughput Nucleotide Sequencing/methods*
;
Galactoside 2-alpha-L-fucosyltransferase
;
Female
;
Retrospective Studies
;
Genotype
;
Middle Aged
;
Blood Grouping and Crossmatching/methods*
;
Adult
;
Mutation
;
Aged
5.Diagnosis of mucormycosis in three children following hematopoietic stem cell transplantation using metagenomic next-generation sequencing.
Yue LI ; Xiao-Hui ZHOU ; Xiao-Dong WANG ; Chun-Jing WANG ; Ke CAO ; Si-Xi LIU
Chinese Journal of Contemporary Pediatrics 2025;27(2):219-224
This article reports the clinical characteristics and treatment processes of three cases of mucormycosis occurring after hematopoietic stem cell transplantation in children, along with a review of relevant literature. All three patients presented with chest pain as the initial symptom, and metagenomic next-generation sequencing (mNGS) confirmed the mucycete infection early in all cases. Two patients recovered after treatment, while one succumbed to disseminated infection. mNGS has facilitated early diagnosis and treatment, reducing mortality rates. Additionally, surgical intervention is an important strategy for improving the prognosis of this condition.
Humans
;
Hematopoietic Stem Cell Transplantation/adverse effects*
;
Mucormycosis/etiology*
;
Male
;
High-Throughput Nucleotide Sequencing/methods*
;
Child
;
Female
;
Metagenomics
;
Child, Preschool
6.Clinical application of next-generation sequencing in early screening of neonatal diseases.
Li-Hong JIANG ; Ben-Qing WU ; Zheng-Yan ZHAO
Chinese Journal of Contemporary Pediatrics 2025;27(4):432-437
OBJECTIVES:
To evaluate the clinical value of next-generation sequencing (NGS) in neonatal disease screening, particularly its advantages when combined with tandem mass spectrometry (MS/MS).
METHODS:
A prospective study was conducted involving blood samples from 1 999 neonates born at the Shenzhen Guangming District People's Hospital, between May and August 2021. All samples were initially screened using MS/MS and fluorescence immunoassay, followed by NGS to detect high-frequency variation sites in 135 related pathogenic genes. Suspected positive variants were validated using Sanger sequencing or multiplex ligation-dependent probe amplification in family studies.
RESULTS:
No confirmed positive cases were found in the MS/MS analysis of the 1 999 neonates. Genetic screening identified 58 positive cases (2.90%), 732 carriers of pathogenic genes (36.62%), and 1 209 negative cases (60.48%). One case of neonatal intrahepatic cholestasis was diagnosed (0.05%, 1/1 999). Fluorescence immunoassay identified 39 cases of glucose-6-phosphate dehydrogenase (G6PD) deficiency (1.95%, 39/1 999), while genetic screening identified 43 cases of G6PD deficiency (2.15%, 43/1 999). The fluorescence immunoassay also detected 6 cases of hyperthyrotropinemia (0.30%, 6/1 999), all of whom carried DUOX2 gene variants. The top ten pathogenic gene carrier rates were G6PD (12.8%), DUOX2 (8.7%), HBB (8.2%), ATP7B (6.6%), GJB2 (5.7%), SLC26A4 (5.6%), PAH (5.6%), ACADSB (4.6%), SLC25A13 (4.2%), and SLC22A5 (4.1%).
CONCLUSIONS
NGS can serve as an effective complement to MS/MS, significantly improving the detection rate of inherited metabolic disorders in neonates. When combined with family validation, it enables precise diagnosis, particularly demonstrating complementary advantages in screening for monogenic diseases such as G6PD deficiency.
Humans
;
Infant, Newborn
;
High-Throughput Nucleotide Sequencing/methods*
;
Neonatal Screening/methods*
;
Tandem Mass Spectrometry
;
Prospective Studies
;
Female
;
Male
;
Infant, Newborn, Diseases/diagnosis*
;
Genetic Testing
7.Value of targeted next-generation sequencing in pathogen detection for neonates with respiratory distress syndrome: a prospective randomized controlled trial.
Hai-Hong ZHANG ; Xia OU-YANG ; Xian-Ping LIU ; Shao-Ru HUANG ; Yun-Feng LIN
Chinese Journal of Contemporary Pediatrics 2025;27(10):1191-1198
OBJECTIVES:
To investigate the application value of targeted next-generation sequencing (tNGS) in the etiological diagnosis of moderate to severe respiratory distress syndrome (RDS) in neonates.
METHODS:
A prospective randomized controlled trial was conducted, enrolling 81 term and late-preterm neonates with moderate to severe RDS admitted to Fujian Children's Hospital between December 2023 and December 2024. Patients were randomly assigned to the conventional microbiological test (CMT) group (n=42) or the tNGS group (n=39). For routine pathogen detection, bronchoalveolar lavage fluid was obtained via bronchoscopy, and lower respiratory tract specimens were collected via the endotracheal tube; all specimens underwent culture, and some specimens additionally underwent polymerase chain reaction or antigen testing. In the tNGS group, tNGS was performed in addition to routine pathogen detection on the same specimen types. The detection rate of pathogens, the detection rate of co-infections, and the duration of antibiotic use were compared between the two groups.
RESULTS:
The pathogen detection rate in the tNGS group (18/39, 46%) was significantly higher than that in the CMT group (8/42, 19%) (P=0.009). The co-infection detection rate was 13% (5/39) in the tNGS group, while no co-infections were identified in the CMT group (P=0.024). Regarding treatment, the duration of antibiotic use in the tNGS group was shorter than that in the CMT group [(12±4) days vs (15±5) days, P=0.003].
CONCLUSIONS
tNGS significantly improves the pathogen detection rate in neonates with moderate to severe RDS and offers advantages in the rapid identification of co-infections and reduction of antibiotic treatment duration, suggesting it has clinical utility and potential for wider adoption.
Humans
;
Prospective Studies
;
Infant, Newborn
;
Female
;
Respiratory Distress Syndrome, Newborn/etiology*
;
Male
;
High-Throughput Nucleotide Sequencing/methods*
8.High-throughput single-microbe RNA sequencing reveals adaptive state heterogeneity and host-phage activity associations in human gut microbiome.
Yifei SHEN ; Qinghong QIAN ; Liguo DING ; Wenxin QU ; Tianyu ZHANG ; Mengdi SONG ; Yingjuan HUANG ; Mengting WANG ; Ziye XU ; Jiaye CHEN ; Ling DONG ; Hongyu CHEN ; Enhui SHEN ; Shufa ZHENG ; Yu CHEN ; Jiong LIU ; Longjiang FAN ; Yongcheng WANG
Protein & Cell 2025;16(3):211-226
Microbial communities such as those residing in the human gut are highly diverse and complex, and many with important implications for health and diseases. The effects and functions of these microbial communities are determined not only by their species compositions and diversities but also by the dynamic intra- and inter-cellular states at the transcriptional level. Powerful and scalable technologies capable of acquiring single-microbe-resolution RNA sequencing information in order to achieve a comprehensive understanding of complex microbial communities together with their hosts are therefore utterly needed. Here we report the development and utilization of a droplet-based smRNA-seq (single-microbe RNA sequencing) method capable of identifying large species varieties in human samples, which we name smRandom-seq2. Together with a triple-module computational pipeline designed for the bacteria and bacteriophage sequencing data by smRandom-seq2 in four human gut samples, we established a single-cell level bacterial transcriptional landscape of human gut microbiome, which included 29,742 single microbes and 329 unique species. Distinct adaptive response states among species in Prevotella and Roseburia genera and intrinsic adaptive strategy heterogeneity in Phascolarctobacterium succinatutens were uncovered. Additionally, we identified hundreds of novel host-phage transcriptional activity associations in the human gut microbiome. Our results indicated that smRandom-seq2 is a high-throughput and high-resolution smRNA-seq technique that is highly adaptable to complex microbial communities in real-world situations and promises new perspectives in the understanding of human microbiomes.
Humans
;
Gastrointestinal Microbiome/genetics*
;
Bacteriophages/physiology*
;
High-Throughput Nucleotide Sequencing
;
Sequence Analysis, RNA/methods*
;
Bacteria/virology*
9.Advances in phage immunoprecipitation sequencing technology.
Yuhao ZHU ; Wenlong ZHU ; Yujie LAI ; Mengjia ZHANG ; Wentao LI
Chinese Journal of Biotechnology 2025;41(8):2987-3007
Phage immunoprecipitation sequencing (PhIP-Seq) is a high-throughput and low-cost method for analyzing the specific binding of target proteins to peptide libraries. The method uses oligonucleotide library synthesis (OLS) to encode proteome-scale peptide libraries for display on phages, and then immunoprecipitates these library phages with target proteins (such as antibodies) for subsequent analysis by high-throughput DNA sequencing. PhIP-Seq enables the screening of peptide targets that react specifically with hundreds of proteins or pathogens. PhIP-Seq has been successfully applied in various fields such as disease detection, screening of autoimmune disease biomarkers, vaccine development, and allergen detection, becoming a high-throughput diagnostic technology. This article systematically describes the development, applications, and result evaluation of PhIP-Seq, in order to gain a more comprehensive understanding of the application and future development prospects of this technology in various fields.
Peptide Library
;
Humans
;
Immunoprecipitation/methods*
;
High-Throughput Nucleotide Sequencing/methods*
;
Bacteriophages/genetics*
10.Using Next-Generation Sequencing Technology to Confirm the HLA Rare Alleles Detected by PCR-SSOP.
Xian-Xin ZHONG ; Wang-Da WU ; Zhan-Rou QUAN ; Su-Qing GAO
Journal of Experimental Hematology 2023;31(1):203-208
OBJECTIVE:
To confirm the HLA genotypes of the samples including 4 cases of magnetic bead probe HLA genotyping result pattern abnormality and 3 cases of ambiguous result detected by PCR sequence-specific oligonudeotide probe (SSOP) method.
METHODS:
All samples derived from HLA high-resolution typing laboratory were detected by PCR-SSOP. A total of 4 samples of magnetic bead probe HLA genotyping result pattern abnormality and 3 samples of ambiguous result were further confirmed by PCR sequence-based typing (SBT) technology and next-generation sequencing (NGS) technology.
RESULTS:
A total of 4 samples of magnetic bead probe HLA genotyping result pattern abnormality were detected by PCR-SSOP method. The results of SBT and NGS showed that the HLA-A genotype of sample 1 did not match any known genotypes. NGS analysis revealed that the novel allele was different from the closest matching allele A*31:01:02:01at position 154 with G>A in exon 2, which resulting in one amino acid substitution at codon 28 from Valine to Methionine (p.Val28Met). The HLA-C genotype of sample 2 was C*03:119, 06:02, sample 3 was C*03:03, 07:137, and sample 4 was B*55:02, 55:12. A total of 3 samples with ambiguous result were initially detected by PCR-SSOP method. The re-examination results of SBT and NGS showed that the HLA-B genotype of sample 5 was B*15:58, 38:02, sample 6 was DRB1*04:05, 14:101, and sample 7 was DQB1*03:34, 05:02. Among them, alleles C*03:119, C*07:137 and DRB1*14:101 were not included in the Common and Well-documented Alleles (CWD) v2.4 of the Chinese Hematopoietic Stem Cell Donor Database.
CONCLUSION
The abnormal pattern of HLA genotyping results of magnetic probe by PCR-SSOP method suggests that it may be a rare allele or a novel allele, which needs to be verified by sequencing.
Humans
;
Alleles
;
Polymerase Chain Reaction
;
Genotype
;
High-Throughput Nucleotide Sequencing
;
Histocompatibility Testing/methods*
;
Technology

Result Analysis
Print
Save
E-mail