1.EZH2/miR-142-3p/HMGB1 axis mediates chondrocyte pyroptosis by regulating endoplasmic reticulum stress in knee osteoarthritis.
Yang CHEN ; Shanshan DONG ; Xin ZENG ; Qing XU ; Mingwei LIANG ; Guangneng LIAO ; Lan LI ; Bin SHEN ; Yanrong LU ; Haibo SI
Chinese Medical Journal 2025;138(1):79-92
BACKGROUND:
Knee osteoarthritis (OA) is still challenging to prevent or treat. Enhanced endoplasmic reticulum (ER) stress and increased pyroptosis in chondrocytes may be responsible for cartilage degeneration. This study aims to investigate the effect of ER stress on chondrocyte pyroptosis and the upstream regulatory mechanisms, which have rarely been reported.
METHODS:
The expression of the histone methyltransferase enhancer of zeste homolog 2 (EZH2), microRNA-142-3p (miR-142-3p), and high mobility group box 1 (HMGB1) and the levels of ER stress, pyroptosis, and metabolic markers in normal and OA chondrocytes were investigated by western blotting, quantitative polymerase chain reaction, immunohistochemistry, fluorescence in situ hybridization, fluorescein amidite-tyrosine-valine-alanine-aspartic acid-fluoromethyl ketone (FAM-YVAD-FMK)/Hoechst 33342/propidium iodide (PI) staining, lactate dehydrogenase (LDH) release assays, and cell viability assessments. The effects of EZH2, miR-142-3p, and HMGB1 on ER stress and pyroptosis and the hierarchical regulatory relationship between them were analyzed by chromatin immunoprecipitation, luciferase reporters, gain/loss-of-function assays, and rescue assays in interleukin (IL)-1β-induced OA chondrocytes. The mechanistic contribution of EZH2, miR-142-3p, and HMGB1 to chondrocyte ER stress and pyroptosis and therapeutic prospects were validated radiologically, histologically, and immunohistochemically in surgically induced OA rats.
RESULTS:
Increased EZH2 and HMGB1, decreased miR-142-3p, enhanced ER stress, and activated pyroptosis in chondrocytes were associated with OA occurrence and progression. EZH2 and HMGB1 exacerbated and miR-142-3p alleviated ER stress and pyroptosis in OA chondrocytes. EZH2 transcriptionally silenced miR-142-3p via H3K27 trimethylation, and miR-142-3p posttranscriptionally silenced HMGB1 by targeting the 3'-UTR of the HMGB1 gene. Moreover, ER stress mediated the effects of EZH2, miR-142-3p, and HMGB1 on chondrocyte pyroptosis. In vivo experiments mechanistically validated the hierarchical regulatory relationship between EZH2, miR-142-3p, and HMGB1 and their effects on chondrocyte ER stress and pyroptosis.
CONCLUSIONS
A novel EZH2/miR-142-3p/HMGB1 axis mediates chondrocyte pyroptosis and cartilage degeneration by regulating ER stress in OA, contributing novel mechanistic insights into OA pathogenesis and providing potential targets for future therapeutic research.
Enhancer of Zeste Homolog 2 Protein/genetics*
;
Osteoarthritis, Knee/pathology*
;
Chondrocytes/metabolism*
;
Pyroptosis/physiology*
;
HMGB1 Protein/genetics*
;
MicroRNAs/metabolism*
;
Endoplasmic Reticulum Stress/genetics*
;
Humans
;
Animals
;
Rats
;
Male
;
Rats, Sprague-Dawley
;
Middle Aged
2.Exosomal Pparα derived from cancer cells induces CD8 + T cell exhaustion in hepatocellular carcinoma through the miR-27b-3p /TOX axis.
Wenjun ZHONG ; Nianan LUO ; Yafeng CHEN ; Jiangbin LI ; Zhujun YANG ; Rui DONG
Chinese Medical Journal 2025;138(23):3139-3152
BACKGROUND:
Cluster of differentiation 8 positive (CD8 + ) T cells play a crucial role in the response against tumors, including hepatocellular carcinoma (HCC), where their dysfunction is commonly observed. While the association between elevated peroxisome proliferator-activated receptor alpha (PPARα) expression in HCC cells and exosomes and unfavorable prognosis in HCC patients is well-established, the underlying biological mechanisms by which PPARα induces CD8 + T cell exhaustion mediated by HCC exosomes remain poorly understood.
METHODS:
Bioinformatics analyses and dual-luciferase reporter assays were used to investigate the regulation of microRNA-27b-3p ( miR-27b-3p ) and thymocyte selection-associated high mobility group box ( Tox ) by Pparα . In vitro and in vivo experiments were conducted to validate the effects of HCC-derived exosomes, miR-27b-3p overexpression, and Pparα on T cell function. Exosome characterization was confirmed using transmission electron microscopy, Western blotting, and particle size analysis. Exosome tracing was performed using small animal in vivo imaging and confocal microscopy. The expression levels of miR-27b-3p , Pparα , and T cell exhaustion-related molecules ( Tox , Havcr2 , and Pdcd1 ) were detected using quantitative reverse transcription polymerase chain reaction analysis, Western blotting analysis, immunofluorescence staining, and flow cytometry analysis.
RESULTS:
Pparα expression was significantly increased in HCC and negatively correlated with prognosis. It showed a positive correlation with Tox and a negative correlation with miR-27b-3p . The overexpressed Pparα from HCC cells was delivered to CD8 + T cells via exosomes, which absorbed miR-27b-3p both in vitro and in vivo , acting as "miRNA sponges". Further experiments demonstrated that Pparα can inhibit the negative regulation of Tox mediated by miR-27b-3p through binding to its 3'untranslated regions.
CONCLUSIONS
HCC-derived exosomes deliver Pparα to T cells and promote CD8 + T cell exhaustion and malignant progression of HCC via the miR-27b-3p /TOX regulatory axis. The mechanisms underlying T-cell exhaustion in HCC can be utilized for the advancement of anticancer therapies.
MicroRNAs/metabolism*
;
PPAR alpha/genetics*
;
Carcinoma, Hepatocellular/genetics*
;
Humans
;
Liver Neoplasms/genetics*
;
CD8-Positive T-Lymphocytes/immunology*
;
Exosomes/metabolism*
;
Animals
;
Cell Line, Tumor
;
Mice
;
High Mobility Group Proteins/genetics*
;
Male
;
T-Cell Exhaustion
3.Research progress on the impact and mechanism of neutrophil extracellular traps (NETs) components in atherosclerosis.
Xin CHEN ; Jing-Jing ZHU ; Xiao-Fan YANG ; Yu-Peng MA ; Yi-Min BAO ; Ke NING
Acta Physiologica Sinica 2025;77(1):107-119
Atherosclerosis (AS) is a prevalent clinical vascular condition and serves as a pivotal pathological foundation for cardiovascular diseases. Understanding the pathogenesis of AS has significant clinical and societal implications, aiding in the development of targeted drugs. Neutrophils, the most abundant leukocytes in circulation, assume a central role during inflammatory responses and closely interact with AS, which is a chronic inflammatory vascular disease. Neutrophil extracellular traps (NETs) are substantial reticular formations discharged by neutrophils that serve as an immune defense mechanism. These structures play a crucial role in inducing dysfunction of the vascular barrier following endothelial cell injury. Components released by NETs pose a threat to the integrity of vascular endothelium, which is essential as it acts as the primary barrier to maintain vascular wall integrity. Endothelial damage constitutes the initial stage in the onset of AS. Recent investigations have explored the intricate involvement of NETs in AS progression. The underlying structures of NETs and their active ingredients, including histone, myeloperoxidase (MPO), cathepsin G, neutrophil elastase (NE), matrix metalloproteinases (MMPs), antimicrobial peptide LL-37, alpha-defensin 1-3, and high mobility group protein B1 have diverse and complex effects on AS through various mechanisms. This review aims to comprehensively examine the interplay between NETs and AS while providing insights into their mechanistic underpinnings of NETs in this condition. By shedding light on this intricate relationship, this exploration paves the way for future investigations into NETs while guiding clinical translation efforts and charting new paths for therapeutic interventions.
Extracellular Traps/physiology*
;
Humans
;
Atherosclerosis/immunology*
;
Neutrophils/physiology*
;
Leukocyte Elastase/metabolism*
;
Peroxidase/physiology*
;
Matrix Metalloproteinases/physiology*
;
Cathepsin G/metabolism*
;
Cathelicidins
;
HMGB1 Protein/physiology*
;
Histones
;
Animals
;
Endothelium, Vascular
4.Characterization of protective effects of Jianpi Tongluo Formula on cartilage in knee osteoarthritis from a single cell-spatial heterogeneity perspective.
Yu-Dong LIU ; Teng-Teng XU ; Zhao-Chen MA ; Chun-Fang LIU ; Wei-Heng CHEN ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(3):741-749
This study aims to integrate data mining techniques of single cell transcriptomics and spatial transcriptomics, along with animal experiment validation, so as to systematically characterize the protective effects of Jianpi Tongluo Formula(JTF) on the cartilage in knee osteoarthritis(KOA) and elucidate the underlying molecular mechanisms. Single cell transcriptomics and spatial transcriptomics datasets(GSE254844 and GSE255460) of the cartilage tissue obtained from KOA patients were analyzed to map the single cell-spatial heterogeneity and identify key pathogenic factors. After that, a KOA rat model was established via knee joint injection of papain. The intervention effects of JTF on the expression features of these key factors were assessed through real-time quantitative polymerase chain reaction(PCR), Western blot, and immunohistochemical staining. As a result, the integrated single cell and spatial transcriptomics data identified distinct cell subsets with different pathological changes in different regions of the inflamed cartilage tissue in KOA, and their differentiation trajectories were closely related to the inflammatory fibrosis-like pathological changes of chondrocytes. Accordingly, the expression levels of the two key effect targets, namely nuclear receptor coactivator 4(NCOA4) and high mobility group box 1(HMGB1) were significantly reduced in the articular surface and superficial zone of the inflamed joints when JTF effectively alleviated various pathological changes in KOA rats, thus reversing the abnormal chondrocyte autophagy level, relieving the inflammatory responses and fibrosis-like pathological changes, and promoting the repair of chondrocyte function. Collectively, this study revealed the heterogeneous characteristics and dynamic changes of inflamed cartilage tissue in different regions and different cell subsets in KOA patients. It is worth noting that NCOA4 and HMGB1 were crucial in regulating chondrocyte autophagy and inflammatory reaction, while JTF could reverse the regulation of NCOA4 and HMGB1 and correct the abnormal molecular signal axis in the target cells of the inflamed joints. The research can provide a new research idea and scientific basis for developing a personalized therapeutic schedule targeting the spatiotemporal heterogeneity characteristics of KOA.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Osteoarthritis, Knee/pathology*
;
Humans
;
Male
;
Cartilage, Articular/metabolism*
;
Chondrocytes/metabolism*
;
Rats, Sprague-Dawley
;
Female
;
Protective Agents/administration & dosage*
;
Single-Cell Analysis
;
Middle Aged
;
HMGB1 Protein/metabolism*
5.High mobility group protein B1(HMGB1) promotes myeloid dendritic cell maturation and increases Th17 cell/Treg cell ratio in patients with immune primary thrombocytopenia.
Qinzhi LI ; Dongsheng DUAN ; Xiujuan WANG ; Mingling SUN ; Ying LIU ; Xinyou WANG ; Lei WANG ; Wenxia FAN ; Mengting SONG ; Xinhong GUO
Chinese Journal of Cellular and Molecular Immunology 2025;41(1):45-50
Objective This study investigated the regulatory effect of high mobility group protein B1 (HMGB1) in the peripheral blood of patients with primary immune thrombocytopenia (ITP) on myeloid dendritic cells (mDC) and Th17/regulatory T cells (Treg) balance. Methods The study enrolled 30 newly diagnosed ITP patients and 30 healthy controls.Flow cytometry was used to measure the proportion of mDC, Th17, and Treg cells in the peripheral blood of ITP patients and healthy controls. ELISA was conducted to quantify the serum levels of HMGB1, interleukin 6 (IL-6), IL-23, IL-17, and transforming growth factor β(TGF-β). The mRNA levels of retinoic acid-related orphan receptor γt(RORγt) and forehead box P3(FOXP3) were detected by real-time PCR. The correlation between the abovementioned cells, cytokines, and platelet count was assessed using Pearson linear correlation analysis. Results The proportion of Th17 cells and the expression levels of HMGB1, IL-6, IL-23, IL-17 and the level of RORγt mRNA in the peripheral blood of ITP patients were higher than those in healthy controls. However, the Treg cell proportion and TGF-β level were lower in ITP patients than those in healthy controls. In patients with ITP, the proportion of mDC and the level of FOXP3 mRNA did not show significant changes. The proportion of mDC cells was significantly correlated with the expression of IL-6 and IL-23. Moreover, the expression of HMGB1 showed a significant correlation with the expression of mDC, IL-6, IL-23, RORγt mRNA, and IL-17. Notably, both the proportion of mDC cells and the expression of HMGB1 were negatively correlated with platelet count. Conclusion The high expression of HMGB1 in peripheral blood of ITP patients may induce Th17/Treg imbalance by promoting the maturation of mDC and affecting the secretion of cytokines, thereby potentially playing a role in the immunological mechanism of ITP.
Humans
;
Th17 Cells/cytology*
;
HMGB1 Protein/genetics*
;
T-Lymphocytes, Regulatory/cytology*
;
Female
;
Male
;
Dendritic Cells/metabolism*
;
Adult
;
Middle Aged
;
Purpura, Thrombocytopenic, Idiopathic/genetics*
;
Nuclear Receptor Subfamily 1, Group F, Member 3/genetics*
;
Young Adult
;
Interleukin-23/blood*
;
Interleukin-17/blood*
;
Interleukin-6/blood*
;
Forkhead Transcription Factors/genetics*
;
Myeloid Cells/cytology*
;
Aged
6.Effects of p38 phosphorylation on stemness maintenance and chemotherapy drug resistance of PANC-1 cells.
Xueying SHI ; Jinbo YU ; Shihai YANG ; Jin ZHAO
Chinese Journal of Cellular and Molecular Immunology 2025;41(2):116-124
Objective The aim of this study was to investigate the effect of p38 on stem cell maintenance of pancreatic cancer. Methods Human pancreatic cancer cells PANC-1 were treated with different concentrations of 5-fluorouracil(5-FU)(0.5×IC50, IC50, and 2×IC50) for 24 hours, and VX-702 (p38 phosphorylation inhibitor) was added, and the cells were inoculated in 6-well culture dishes with ultra-low adhesion to observe the changes of sphere tumors. The expression levels of cyclin-dependent kinase 2(CDK2), cyclin B1 and D1, Octamer-binding transcription factor 4(OCT4), SRY-box transcription factor 2(SOX2), Nanog and p38 were measured by Western blot. The mRNA expression levels of p38, OCT4, Nanog and SOX2 were tested by RT-PCR. Cell cycle, apoptosis, and the proportion of CD44+CD133+PANC-1 cells were evaluated by flow cytometry. Results The results showed that 5-FU inhibited the formation of tumor spheres in PANC-1 cells, increased CD44+CD133+cell fragments, down-regulated the expression of OCT4, Nanog and SOX2, and inhibited the stemness maintenance of PANC-1 tumor stem cells. Phosphorylation of PANC-1 cells was inhibited by a highly selective p38 MAPK inhibitor, VX-702(p38 mitogen-activated protein kinase inhibitor), which had the same effect as 5-FU treatment. When VX-702 combined with 5-FU was used to treat PANC-1 cells, the therapeutic effect was enhanced. Conclusion p38 inhibitors decreased PANC-1 cell activity and increased cell apoptosis. p38 inhibitors inhibit the stemness maintenance of pancreatic cancer stem cells.
Humans
;
Phosphorylation/drug effects*
;
Cell Line, Tumor
;
p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors*
;
Neoplastic Stem Cells/metabolism*
;
Drug Resistance, Neoplasm/drug effects*
;
Fluorouracil/pharmacology*
;
Pancreatic Neoplasms/pathology*
;
Apoptosis/drug effects*
;
SOXB1 Transcription Factors/genetics*
;
Octamer Transcription Factor-3/genetics*
7.RNA-binding protein ELAVL1 regulates SOX4 stability and promotes hormone-sensitive prostate cancer proliferation through m6A-dependent regulation.
Sha-Sha MIN ; Zhong-Lin CAI ; Yan-Ting SHEN ; Zhong WANG
National Journal of Andrology 2025;31(9):791-799
OBJECTIVE:
To investigate the expression of RNA binding protein ELAVL1 in prostate cancer (PCa), especially hormone-sensitive prostate cancer (HSPC), and its relationship with tumor proliferation. This study further aims to reveal the molecular mechanism by which ELAVL1 promotes HSPC proliferation by stabilizing SOX4 mRNA in an m6A-dependent manner.
METHODS:
The expression of ELAVL1 in PCa tissues and its relationship with prognosis were analyzed in the Cancer Genome Atlas (TCGA) database, and the differences in HSPC and hormone-resistant prostate cancer (HRPC) were compared. And its relationship with prognosis were analyzed in the Cancer Genome Atlas (TCGA) database, and the differences in HSPC and hormone-resistant prostate cancer (HRPC) were compared. Western blot was used to detect ELAVL1 protein expression in PCa cell lines. After ELAVL1 knockdown by siRNA, cell proliferation was evaluated using CCK-8 assays, and changes in downstream target genes were detected by RT-qPCR. Tumor xenograft experiments in nude mice were performed to further assess the impact of ELAVL1 on tumor growth. The interaction between ELAVL1 and SOX4 mRNA was verified by RIP-seq. And the mRNA and protein levels of SOX4 after knockdown of ELAVL1 were detected by RT-qPCR and Western blot, respectively. CCK-8 was used to evaluate the effect of SOX4 knockdown on cell proliferation. MeRIP-qPCR was used to detect the m6A modification level of SOX4 and the effect of knocking down METTL3. RNA pull-down experiments verified the interaction between SOX4 RNA fragments and ELAVL1 protein. RNA stability experiments evaluated the effect of ELAVL1 knockdown on SOX4 mRNA stability.
RESULTS:
The expression of ELAVL1 in PCa cells was higher than that in normal prostate epithelial cells. The prognosis of patients with high expression of ELAVL1 was significantly worse than that of patients with low expression. In the GSE32269 dataset, the expression level of ELAVL1 in HSPC was significantly higher than that in HRPC. After knocking down of ELAVL1 in LNCaP and VCaP cells, CCK-8 experiments showed that the cell proliferation ability was significantly affected after knocking down ELAVL1, and overexpressed ELAVL1 promoted the proliferation of HSPC cells. The results of in vivo studies showed that knockdown of ELAVL1 significantly inhibited the tumorigenic capacity of LNCaP cells and resulted in a marked reduction in xenograft tumor mass. The levels of SOX4 mRNA and protein in LNCaP and VCaP cells were significantly higher than those in normal prostate epithelial cells RWPE-1. RIP-qPCR confirmed the interaction between ELAVL1 protein and SOX4 mRNA. After knocking down of ELAVL1, the expression levels of SOX4 mRNA and protein were significantly decreased. After knocking down of SOX4, the proliferation ability of LNCaP and VCaP cells was significantly inhibited.
CONCLUSION
ELAVL1 is highly expressed in HSPC. High expression of ELAVL1 is associated with the proliferation of HSPC. SOX4 is a downstream molecule of ELAVL1 which promotes the proliferation of HSPC. ELAVL1 enhances the stability of SOX4 mRNA through an m6A-dependent mechanism.
Male
;
Humans
;
SOXC Transcription Factors/genetics*
;
ELAV-Like Protein 1/metabolism*
;
Cell Proliferation
;
Prostatic Neoplasms/genetics*
;
Animals
;
Mice, Nude
;
Cell Line, Tumor
;
Mice
;
Gene Expression Regulation, Neoplastic
;
RNA, Messenger/metabolism*
;
Prognosis
8.Mechanisms of enhanced noise susceptibility in waardenburg syndrome Sox10 p.S100Rfs*9 mutant mice.
Yang XIAO ; Li LI ; Ken LIN ; Dong SU ; Yingqin GAO ; Jing MA ; Tiesong ZHANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(7):632-639
Objective:To investigate the impact of Waardenburg syndrome(WS) -associated Sox10 p.S100Rfs*9 mutation on inner ear function and its mechanism in noise-induced hearing impairment. Methods:A mice model carrying the Sox10 p.S100Rfs*9 mutation was established using CRISPR-Cas9 gene editing technology. Auditory phenotypes were assessed under baseline conditions and after noise exposure(96 dB SPL, 2 hours). Auditory brainstem response(ABR) tests were performed to evaluate hearing function, combined with immunofluorescence staining of cochlear basilar membrane whole-mounts to observe hair cells and ribbon synapses. Transcriptome sequencing was conducted to analyze molecular mechanisms. Results:Sox10 p.S100Rfs*9 heterozygous mice exhibited normal hearing thresholds with characteristic ventral pigmentation abnormalities under baseline conditions. Following noise exposure, mutant mice showed significantly higher ABR thresholds at 24 000 Hz compared to wild-type controls([60.00±6.12]vs[48.13±4.28]dB SPL, P<0.000 1), and a significant reduction in ribbon synapses(CtBP2-positive puncta) in the basal turn([55.0±2.3]vs[64.8±3.3]per inner hair cell, P=0.006 6), while hair cell morphology and number remained intact. Transcriptome analysis revealed altered expression of genes involved in immune regulation, membrane structures, ion channels, and neuroactive ligand-receptor interactions. Conclusion:The Sox10 p.S100Rfs*9 mutation does not alter baseline hearing function but significantly increases inner ear susceptibility to noise damage, primarily manifested as enhanced ribbon synapse vulnerability, especially in high-frequency regions. This gene-environment interaction reveals that Sox10 haploinsufficiency may compromise noise tolerance by affecting synaptic stability and inner ear protective mechanisms. These findings provide new perspectives on the phenotypic heterogeneity in WS patients and theoretical basis for individualized noise protection strategies for patients carrying SOX10 mutations.
Animals
;
SOXE Transcription Factors/genetics*
;
Waardenburg Syndrome/physiopathology*
;
Mice
;
Hearing Loss, Noise-Induced/genetics*
;
Evoked Potentials, Auditory, Brain Stem
;
Mutation
;
Noise
;
Disease Models, Animal
;
Ear, Inner/physiopathology*
9.Pingchuanning Formula suppresses airway inflammation in a rat model of asthmatic cold syndrome by regulating the HMGB1/Beclin-1 axis-mediated autophagy.
Xinheng WANG ; Xiaohan SHAO ; Tongtong LI ; Lu ZHANG ; Qinjun YANG ; Weidong YE ; Jiabing TONG ; Zegeng LI ; Xiangming FANG
Journal of Southern Medical University 2025;45(6):1153-1162
OBJECTIVES:
To explore the mechanism of Pingchuanning Formula (PCN) for inhibiting airway inflammation in rats with asthmatic cold syndrome.
METHODS:
A total of 105 SD rats were randomized equally into 7 groups, including a control group, an asthmatic cold syndrome model group, 3 PCN treatment groups at high, medium and low doses, a Guilong Kechuanning (GLCKN) treatment group, and a dexamethasone (DEX) treatment group. In all but the control rats, asthma cold syndrome models were established and daily gavage of saline, PCN, GLCKN or DEX was administered 29 days after the start of modeling. The changes in general condition, lung function and lung histopathology of the rats were observed, and inflammatory factors in the alveolar lavage fluid (BALF), oxidative stress, lung tissue ultrastructure, cytokine levels, and expressions of the genes related to the HMGB1/Beclin-1 axis and autophagy were analyzed.
RESULTS:
The rat models had obvious manifestations of asthmatic cold syndrome with significantly decreased body mass, food intake, and water intake, reduced FEV0.3, FVC, and FEV0.3/FVC, obvious inflammatory cell infiltration in the lung tissue, and increased alveolar inflammation score and counts of neutrophils, eosinophils, lymphocytes, macrophages, and leukocytes in the BALF. The rat models also had significantly increased MDA level and decreased SOD level and exhibited obvious ultrastructural changes in the lung tissues, where the expressions of HMGB1, Beclin-1, ATG5, TNF-α, IL-6,IL-1β, and IL-13 and the LC3II/I ratio were increased, while the levels of Bcl-2 and IFN-γ were decreased. PCN treatment significantly improved these pathological changes in the rat models, and its therapeutic effect was better than that of GLKCN and similar to that of DEX.
CONCLUSIONS
PCN can effectively alleviate airway inflammation in rat models of asthmatic cold syndrome possibly by modulating the HMGB1/Beclin-1 signaling axis to suppress cell autophagy, thereby attenuating airway inflammatory damages.
Animals
;
Rats
;
Autophagy/drug effects*
;
Rats, Sprague-Dawley
;
Asthma/pathology*
;
Beclin-1
;
HMGB1 Protein/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Disease Models, Animal
;
Male
;
Lung/pathology*
;
Inflammation
10.Aucubin alleviates knee osteoarthritis in mice by suppressing the NF‑κB signaling pathway.
Yongxin MAI ; Shuting ZHOU ; Ruijia WEN ; Jinfang ZHANG ; Dongxiang ZHAN
Journal of Southern Medical University 2025;45(10):2104-2110
OBJECTIVES:
To assess the therapeutic effect of aucubin in mice with knee osteoarthritis (KOA) and investigate the underlying mechanism.
METHODS:
Sixty C57BL/6J mice were randomized equally into sham operation group, KOA model group, glucosamine (positive control) treatment group, and low-, medium-, and high-dose aucubin treatment groups (2, 4, and 8 mg/kg, respectively). KOA mouse models were established by transection of the anterior cruciate ligament (ACL), and the treatment was initiated on day 1 postoperatively and administered weekly for 8 weeks. Safranin O-fast green staining, immunohistochemistry, and microCT were used to evaluate the changes in cartilage pathology, inflammatory protein expression, and subchondral bone volume fraction (BV/TV). The expression levesl of COL2, SOX9, p-P65, IL-1β and MMP13 proteins in the cartilage tissues were detected using Western blotting. In a chondrocyte model with IL-1β treatment for mimicking KOA, the effect of aucubin on chondrogenic differentiation was observed with Alcian blue and Safranin O staining, and cellular COL2, SOX9 and TNF‑α mRNA expressions were detected with RT-qPCR.
RESULTS:
Compared with those in the model group, the mouse models receiving aucubin treatment showed significantly upregulated COL2 and SOX9 protein levels and downregulated p-P65, IL-1β and MMP13 expressions in the cartilage tissues. In the IL-1β-induced chondrocyte model, aucubin treatment significantly upregulated the mRNA expressions of SOX9 and COL2 but lowered the mRNA expression of TNF-α. Alcian blue and Safranin O staining confirmed that aucubin promoted the synthesis of cartilage extracellular matrix and enhanced chondrogenic differentiation of the cells.
CONCLUSIONS
Aucubin can effectively alleviate KOA in mice by inhibiting NF‑κB-mediated cartilage inflammation, promoting cartilage matrix synthesis, and improving subchondral bone microstructure.
Animals
;
Mice, Inbred C57BL
;
Mice
;
Osteoarthritis, Knee/drug therapy*
;
Signal Transduction/drug effects*
;
NF-kappa B/metabolism*
;
Iridoid Glucosides/therapeutic use*
;
SOX9 Transcription Factor/metabolism*
;
Chondrocytes/drug effects*
;
Male
;
Interleukin-1beta/metabolism*
;
Matrix Metalloproteinase 13/metabolism*
;
Collagen Type II/metabolism*
;
Disease Models, Animal

Result Analysis
Print
Save
E-mail