1.Study on the effect of ATPIF1 on the anti-tumor activity of CAR-NK92 cells by regulating glycolytic capacity.
Biao LIU ; Xue GONG ; Biliang HU ; Chunlei GUO ; Genshen ZHONG
Chinese Journal of Cellular and Molecular Immunology 2025;41(10):865-874
Objective To investigate the effect of ATP synthase inhibitory factor 1 (ATPIF1) on the antitumor activity of chimeric antigen receptor (CAR)-NK92 cells. Methods HER2-targeted CAR-NK92 cells with ATPIF1 overexpression or knockdown were constructed. CAR-positive expression rate was detected by flow cytometry. Cell proliferation capacity was measured using CCK-8 assay. Glycolytic capacity was analyzed by Seahorse metabolic analyzer. Mitochondrial membrane potential levels were detected using JC-1 probe. Target cell lysis rate was evaluated by firefly luciferase reporter assay. Expression levels of CD107a, natural-killer group 2 member D (NKG2D), granzyme B (GzmB), perforin, and interleukin 2 (IL-2) were detected via flow cytometry. Quantitative real-time PCR was used to measure the expression of interferon-induced protein with tetratricopeptide repeats 1 (IFIT1), tumor necrosis factor α (TNF-α), ATPIF1, and hexokinase 1 (HK1). The impact of glycolytic inhibition by 2-Deoxy-D-glucose (2-DG) on CAR-NK92 antitumor capacity was examined. Results Successfully generated HER2-targeting control CAR-NK92 cells, as well as ATPIF1-overexpressing and ATPIF1 knockdown CAR-NK92 cells. The ATPIF1-overexpressing CAR-NK92 cells showed significantly enhanced target cell lysis rate, elevated expression levels of NKG2D and CD107a, increased secretion capacities of Granzyme B (GzmB) and IL-2, and upregulated mRNA expression levels of IFIT1 and TNF-α, while ATPIF1-knockdown cells exhibited opposite effects. ATPIF1 overexpression induced metabolic reprogramming in CAR-NK92 cells, manifested by significantly decreased mitochondrial membrane potential (δpsim), markedly upregulated HK1 mRNA expression, and enhanced basal glycolysis and glycolytic capacity. After glycolysis inhibition with 2-DG (5 μmol/L), both ATPIF1-overexpressing and knockdown CAR-NK92 cells showed no significant differences in NKG2D and CD107a expression levels compared to control cells. Conclusion ATPIF1 regulates the antitumor activity of CAR-NK92 cells through modulating glycolytic metabolism. Overexpression of ATPIF1 can enhance the antitumor efficacy of CAR-NK92 cells.
Humans
;
Glycolysis
;
Killer Cells, Natural/metabolism*
;
Receptors, Chimeric Antigen/immunology*
;
Granzymes/genetics*
;
Hexokinase/metabolism*
;
Cell Line, Tumor
;
Interleukin-2/genetics*
;
Cell Proliferation
;
NK Cell Lectin-Like Receptor Subfamily K/genetics*
;
Membrane Potential, Mitochondrial
2.Dahuang Zhechong Pill Improves Pulmonary Fibrosis through miR-29b-2-5p/HK2 Mediated Glycolysis Pathway.
Xiao-Yan HE ; Jing-Tao LIANG ; Jing-Yi XIAO ; Xin LI ; Xiao-Bo ZHANG ; Da-Yi CHEN ; Li-Juan WU
Chinese journal of integrative medicine 2025;31(7):600-612
OBJECTIVE:
To explore the preventive and therapeutic effects of Dahuang Zhechong Pill (DZP) on pulmonary fibrosis and the underlying mechanisms.
METHODS:
The first key rate-limiting enzyme hexokinase 2 (HK2) of glycolysis was silenced and over-expressed through small interfering RNA and lentivirus using lung fibroblast MRC-5 cell line, respectively. The cell viability, migration, invasion and proliferation were detected by cell counting kit-8, wound healing assay, transwell assay, and flow cytometry. The mRNA and protein expression levels of HK2 were detected by RT-PCR and Western blotting, respectively. The contents of glucose, adenosine triphosphate (ATP) and lactate in MRC-5 cells were determined by enzyme-linked immunosorbnent assay (ELISA). Then, the relationship between miR-29b-2-5p and HK2 was explored by luciferase reporter gene assay. Pulmonary fibrosis cell model was induced by transforming growth factor-β 1 (TGF-β 1) in MRC-5 cells, and the medicated serum of DZP (DMS) was prepared in rats. MRC-5 cells were divided into control, TGF-β 1, TGF-β 1+10% DMS, TGF-β 1+10% DMS+miR-29b-2-5p inhibitor, TGF-β 1+10% DMS+inhibitor negative control, TGF-β 1+10% DMS+miR-29b-2-5p mimic and TGF-β 1+10% DMS+mimic negative control groups. After miR-29b-2-5p mimics and inhibitors were transfected into MRC-5 cells, all groups except control and model group were treated with DMS. The effect of DMS on MRC-5 cells were detected using aforementioned methods and immunofluorescence. Similarly, the contents of glucose, ATP and lactate in each group were measured by ELISA.
RESULTS:
The mRNA and protein expressions of HK2 in MRC-5 cells were successfully silenced and overexpressed through si-HK2-3 and lentiviral transfection, respectively. After silencing HK2, the mRNA and protein expressions of HK2 were significantly decreased (P<0.01), and the concentrations of glucose, ATP and lactate were also significantly decreased (P<0.05). The proliferation, migration and invasion of MRC-5 cells were significantly declined (P<0.05 or P<0.01), while the apoptosis of MRC-5 cells was significantly increased (P<0.01). After overexpressing HK2, the mRNA and protein expressions of HK2 were significantly increased (P<0.05), and the concentrations of glucose, ATP and lactate were also significantly increased (P<0.05 or P<0.01). The proliferation, migration and invasion of MRC-5 cells were significantly increased (P<0.05 or P<0.01), while the apoptosis of MRC-5 cells was significantly decreased (P<0.05). The relative luciferase activity of 3'UTR-WT+hsa-miR-29b-2-5p transfected with HK2 was significantly decreased (P<0.01). After miR-29b-2-5p mimic and inhibitor were transfected into the MRC-5 cells, DMS intervention could significantly reduce the concentration of glucose, ATP and lactate, and the mRNA and proteins expressions of HK2, phosphofructokinase and pyruvate kinase isoform M2 (P<0.05 or P<0.01). The proliferation, migration and invasion of MRC-5 cells were alleviated (P<0.05 or P<0.01), and the deposition of fibronectin, α-smooth muscle actin, and collagen I were significantly decreased (P<0.05 or P<0.01).
CONCLUSIONS
Glycolysis is closely related to pulmonary fibrosis. DZP reduced glycolysis and inhibited fibroblasts' excessive differentiation and abnormal collagen deposition through the miR-29b-2-5p/HK2 pathway, which played a role in delaying the process of pulmonary fibrosis.
MicroRNAs/genetics*
;
Glycolysis/genetics*
;
Animals
;
Pulmonary Fibrosis/metabolism*
;
Humans
;
Drugs, Chinese Herbal/therapeutic use*
;
Hexokinase/genetics*
;
Cell Line
;
Cell Proliferation/drug effects*
;
Rats, Sprague-Dawley
;
Rats
;
Cell Movement/drug effects*
;
Male
;
Cell Survival/drug effects*
;
Signal Transduction/drug effects*
3.High expression of hexokinase 2 promotes proliferation, migration and invasion of colorectal cancer cells by activating the JAK/STAT pathway and regulating tumor immune microenvironment.
Journal of Southern Medical University 2025;45(3):542-553
OBJECTIVES:
To explore the expression of hexokinase 2 (HK2) in colorectal cancer (CRC) and its possible mechanisms for regulating tumor cell behaviors and tumor immune microenvironment.
METHODS:
We analyzed HK2 expression in CRC and its impact on patient prognosis and tumor immune microenvironment using public databases. HK2 expression was also examined in 8 CRC and paired adjacent tissues using immunohistochemistry, Western blotting and RT-qPCR. In cultured CRC cell lines CT26 and HCT116 with low HK2 expression, the effects of lentivirus-mediated HK2 overexpression and JAK/STAT3 inhibitors on cell proliferation, migration, and invasion were assessed using CCK-8 assay, colony formation assay and Transwell assay and in a subcutaneous tumor-bearing mouse model; the changes were also observed in MC38 and CACO2 cells with high HK2 expressions following treatment with HK2 inhibitor 3-BP. Western blotting was performed to verify the relationship between HK2 and JAK/STAT signaling pathway protein expressions.
RESULTS:
Informatics analyses suggested that HK2 expression was significantly higher in CRC tissues than in adjacent tissues (P<0.001), and patients with high HK2 expressions had worse prognosis (P=0.09). In the 8 clinical CRC tissues, HK2 expressions were significantly higher in the tumor tissues than in the adjacent tissues (P<0.01). In CT26 and HCT116 cells, HK2 overexpression significantly enhanced cell proliferation, migration and invasion, while in HK2-overexpressing MC38 and CACO2 cells, inhibiting HK2 with 3-BP strongly suppressed these changes. HK2 overexpression promoted STAT3 phosphorylation, and JAK/STAT3 inhibitors effectively suppressed tumor cell proliferation, migration and invasion. TIMER and MCPcounter analyses indicated correlations between HK2 and immune cells, and TCGA and GEO analyses suggested significant positive correlations between HK2 and the immune checkpoints including PDCD1.
CONCLUSIONS
HK2 is upregulated in CRC to promote tumor cell proliferation, migration and invasion possibly by activating the JAK-STAT signaling pathway and modulating tumor immune microenvironment.
Humans
;
Colorectal Neoplasms/metabolism*
;
Cell Proliferation
;
Hexokinase/genetics*
;
Tumor Microenvironment
;
Cell Movement
;
Signal Transduction
;
Animals
;
STAT3 Transcription Factor/metabolism*
;
Mice
;
Neoplasm Invasiveness
;
Cell Line, Tumor
;
Janus Kinases/metabolism*
;
HCT116 Cells
;
Caco-2 Cells
4.Emd-D inhibited ovarian cancer progression via PFKFB4-dependent glycolysis and apoptosis.
Xin ZHAO ; Chao CHEN ; Xuefei FENG ; Haoqi LEI ; Lingling QI ; Hongxia ZHANG ; Haiying XU ; Jufeng WAN ; Yan ZHANG ; Baofeng YANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(4):431-442
Ovarian cancer poses a significant threat to women's health, necessitating effective therapeutic strategies. Emd-D, an emodin derivative, demonstrates enhanced pharmaceutical properties and bioavailability. In this study, Cell Counting Kit 8 (CCK8) assays and Ki-67 staining revealed dose-dependent inhibition of cell proliferation by Emd-D. Migration and invasion experiments confirmed its inhibitory effects on OVHM cells, while flow cytometry analysis demonstrated Emd-D-induced apoptosis. Mechanistic investigations elucidated that Emd-D functions as an inhibitor by directly binding to the glycolysis-related enzyme PFKFB4. This was corroborated by alterations in intracellular lactate and pyruvate levels, as well as glucose transporter 1 (GLUT1) and hexokinase 2 (HK2) expression. PFKFB4 overexpression experiments further supported the dependence of Emd-D on PFKFB4-mediated glycolysis and SRC3/mTORC1 pathway-associated apoptosis. In vivo experiments exhibited reduced xenograft tumor sizes upon Emd-D treatment, accompanied by suppressed glycolysis and increased expression of Bax/Bcl-2 apoptotic proteins within the tumors. In conclusion, our findings demonstrate Emd-D's potential as an anti-ovarian cancer agent through inhibition of the PFKFB4-dependent glycolysis pathway and induction of apoptosis. These results provide a foundation for further exploration of Emd-D as a promising drug candidate for ovarian cancer treatment.
Female
;
Humans
;
Ovarian Neoplasms/physiopathology*
;
Phosphofructokinase-2/genetics*
;
Apoptosis/drug effects*
;
Glycolysis/drug effects*
;
Animals
;
Cell Line, Tumor
;
Mice
;
Cell Proliferation/drug effects*
;
Emodin/administration & dosage*
;
Mice, Nude
;
Mice, Inbred BALB C
;
Hexokinase/metabolism*
;
Xenograft Model Antitumor Assays
5.Mechanism of WAVE1 regulation of lipopolysaccharide-induced mitochondrial metabolic abnormalities and inflammatory responses in macrophages.
Ting ZENG ; Yue-Qian YANG ; Jian HE ; Dao-Lin SI ; Hui ZHANG ; Xia WANG ; Min XIE
Chinese Journal of Contemporary Pediatrics 2024;26(12):1341-1351
OBJECTIVES:
To explore the mechanism by which Wiskott-Aldrich syndrome protein family verprolin-homologous protein 1 (WAVE1) regulates lipopolysaccharide (LPS)-induced mitochondrial metabolic abnormalities and inflammatory responses in macrophages.
METHODS:
Macrophage cell lines with overexpressed WAVE1 (mouse BMDM and human THP1 cells) were prepared. The macrophages were treated with LPS (500 ng/mL) to simulate sepsis-induced inflammatory responses. The experiment consisted of two parts. The first part included control, LPS, vector (LPS+oe-NC), WAVE1 overexpression (LPS+oe-WAVE1) groups. The second part included LPS, LPS+oe-NC, LPS+oe-WAVE1 and exogenous high mobility group box-1 (HMGB1) intervention (LPS+oe-WAVE1+HMGB1) groups. RT-PCR was used to measure mitochondrial DNA content, and RT-qPCR was used to detect the mRNA expression levels of WAVE1, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6. Western blot was performed to measure the protein expression of WAVE1, hexokinase 2, and pyruvate kinase M2. ELISA was utilized to detect the levels of TNF-α, IL-1β, IL-6, and HMGB1. JC-1 staining was used to assess mitochondrial membrane potential. Seahorse XP96 was used to evaluate oxygen consumption rate and extracellular acidification rate. MitoSOX probe was employed to measure mitochondrial reactive oxygen species levels, and 2-NBDG method was used to assess glucose uptake. Kits were used to measure pyruvate kinase activity, lactate, adenosine triphosphate (ATP), and HMGB1 levels.
RESULTS:
Compared with the control group, the LPS group showed lower levels of WAVE1 protein and mRNA expression, mitochondrial membrane potential, oxygen consumption rate, and mitochondrial DNA content (P<0.05), while TNF-α, IL-1β, IL-6 levels and mRNA expression, mitochondrial reactive oxygen species, glucose uptake, lactate, ATP, hexokinase 2, and pyruvate kinase M2 protein expression levels as well as extracellular acidification rate, pyruvate kinase activity, and HMGB1 release were significantly increased (P<0.05). Compared with the LPS+oe-NC group, the LPS+oe-WAVE1 group showed increased WAVE1 protein and mRNA expression, mitochondrial membrane potential, oxygen consumption rate, and mitochondrial DNA content (P<0.05), while TNF-α, IL-1β, IL-6 levels and mRNA expression, mitochondrial reactive oxygen species, glucose uptake, lactate, ATP, hexokinase 2, and pyruvate kinase M2 protein expressions, as well as extracellular acidification rate, pyruvate kinase activity, and HMGB1 release were decreased (P<0.05). Compared with the LPS+oe-WAVE1 group, the LPS+oe-WAVE1+HMGB1 group exhibited increased glucose uptake, lactate, ATP levels, and extracellular acidification rate (P<0.05).
CONCLUSIONS
WAVE1 participates in the regulation of LPS-induced inflammatory responses in macrophages by modulating the release of inflammatory factors, mitochondrial metabolism, and HMGB1 release.
Lipopolysaccharides
;
Humans
;
Mitochondria/metabolism*
;
Animals
;
Macrophages/metabolism*
;
Mice
;
Hexokinase/genetics*
;
Wiskott-Aldrich Syndrome Protein Family/metabolism*
;
HMGB1 Protein/physiology*
;
Inflammation/metabolism*
;
DNA, Mitochondrial
;
Pyruvate Kinase/metabolism*
6.Toxicity and metabolism of 3-bromopyruvate in Caenorhabditis elegans.
Qiao-Ling GU ; Yan ZHANG ; Xi-Mei FU ; Zhao-Lian LU ; Yao YU ; Gen CHEN ; Rong MA ; Wei KOU ; Yong-Mei LAN
Journal of Zhejiang University. Science. B 2020;21(1):77-86
In this study, we aimed to evaluate the toxic effects, changes in life span, and expression of various metabolism-related genes in Caenorhabditis elegans, using RNA interference (RNAi) and mutant strains, after 3-bromopyruvate (3-BrPA) treatment. C. elegans was treated with various concentrations of 3-BrPA on nematode growth medium (NGM) plates, and their survival was monitored every 24 h. The expression of genes related to metabolism was measured by the real-time fluorescent quantitative polymerase chain reaction (qPCR). Nematode survival in the presence of 3-BrPA was also studied after silencing three hexokinase (HK) genes. The average life span of C. elegans cultured on NGM with 3-BrPA was shortened to 5.7 d compared with 7.7 d in the control group. hxk-1, hxk-2, and hxk-3 were overexpressed after the treatment with 3-BrPA. After successfully interfering hxk-1, hxk-2, and hxk-3, the 50% lethal concentration (LC50) of all mutant nematodes decreased with 3-BrPA treatment for 24 h compared with that of the control. All the cyp35 genes tested were overexpressed, except cyp-35B3. The induction of cyp-35A1 expression was most obvious. The LC50 values of the mutant strains cyp-35A1, cyp-35A2, cyp-35A4, cyp-35B3, and cyp-35C1 were lower than that of the control. Thus, the toxicity of 3-BrPA is closely related to its effect on hexokinase metabolism in nematodes, and the cyp-35 family plays a key role in the metabolism of 3-BrPA.
Animals
;
Caenorhabditis elegans/metabolism*
;
Caenorhabditis elegans Proteins/genetics*
;
Cytochrome P-450 Enzyme System/genetics*
;
Hexokinase/physiology*
;
Pyruvates/toxicity*
;
RNA, Messenger/analysis*
7.Prosapogenin A inhibits cell growth of MCF7 via downregulating STAT3 and glycometabolism-related gene.
Tian-xiao WANG ; Xiao-yan SHI ; Yue CONG ; Zhong-qing ZHANG ; Ying-hua LIU
Acta Pharmaceutica Sinica 2013;48(9):1510-1514
This study is to investigate the inhibitory effect and mechanism of prosapogenin A (PSA) on MCF7. MTT assay was performed to determine the inhibitory effect of PSA on MCF7 cells. PI/Hoechst 33342 double staining was used to detect cell apoptosis. RT-PCR was used to test the mRNA levels of STAT3, GLUT1, HK and PFKL. Western blotting was performed to determine the expression of STAT3 and pSTAT3 protein in MCF7 cells. The results showed that PSA could dose-dependently inhibit cell growth of MCF7 followed by IC50 of 9.65 micrmol x L(-1) and promote cell apoptosis of MCF7. Reduced mRNA levels of STAT3, HK and PFKL were observed in MCF7 cells treated with 5 micromol x L(-1) of PSA. PSA also decreased the level of pSTAT3 protein. STAT3 siRNA caused decrease of mRNA of GLUT1, HK and PFKL which indicated STAT3 could regulate the expressions of GLUT1, HK and PFKL. The results suggested that PSA could inhibit cell growth and promote cell apoptosis of MCF7 via inhibition of STAT3 and glycometabolism-related gene.
Antineoplastic Agents, Phytogenic
;
isolation & purification
;
pharmacology
;
Apoptosis
;
drug effects
;
Cell Proliferation
;
drug effects
;
Glucose Transporter Type 1
;
genetics
;
metabolism
;
Hexokinase
;
genetics
;
metabolism
;
Humans
;
MCF-7 Cells
;
Phosphofructokinases
;
genetics
;
metabolism
;
Plants, Medicinal
;
chemistry
;
RNA, Messenger
;
metabolism
;
STAT3 Transcription Factor
;
genetics
;
metabolism
;
Saponins
;
isolation & purification
;
pharmacology
;
Veratrum
;
chemistry
8.Impact of distillage recycling on the glycolysis key enzymes, stress response metabolites and intracelluler components of the self-flocculating yeast.
Lihan ZI ; Chunming ZHANG ; Jiangang REN ; Wenjie YUAN ; Lijie CHEN
Chinese Journal of Biotechnology 2010;26(7):1019-1024
This research aimed to study the effect of distillage recycling on ethanol fermentation, the key glycolytic enzymes and cell composition of the self-flocculating yeast. With the self-flocculating yeast SPSC01 and medium composed of 220 g/L glucose, 8 g/L yeast extract and 6 g/L peptone, continuous ethanol fermentation was carried out at the dilution rate of 0.04 h(-1) with a 1.5 L tank bioreactor. Fermentation broth was collected every 3 days, and ethanol and other volatile byproducts were removed by distillation, but the stillage with high boiling byproducts was recycled to prepare the medium instead of fresh water. The system was run for 20 days, during which ethanol and biomass concentrations in the effluent decreased continuously, indicating the significant inhibition of the high boiling byproducts accumulated within the system. Thus, the activities of the key enzymes of the glycolytic pathway: hexokinase, 6-phosphofructose kinase, and pyruvate kinase were analyzed, and it was observed that all of them were inhibited. Furthermore, the biosynthesis of the stress response metabolites glycerol and trehalose was investigated, and it was found that glycerol production that can protect yeast cells against osmotic pressure stress was enhanced, but trehalose biosynthesis that can protect yeast cells against ethanol inhibition was not improved, correspondingly. And in the meantime, the biosynthesis of the major intracellular components proteins and hydrocarbons was adjusted, correspondingly.
Bioreactors
;
microbiology
;
Ethanol
;
metabolism
;
Fermentation
;
Flocculation
;
Glycerol
;
metabolism
;
Glycolysis
;
Hexokinase
;
metabolism
;
Industrial Microbiology
;
methods
;
Phosphofructokinase-1
;
metabolism
;
Saccharomyces cerevisiae
;
enzymology
;
genetics
;
metabolism
;
Schizosaccharomyces
;
enzymology
;
genetics
;
metabolism
;
Trehalose
;
metabolism
;
Triticum
;
metabolism
;
Zea mays
;
metabolism
9.Mechanism of anti-tumor effect of HIF-1alpha silencing on cervical cancer in nude mice.
Jing-hong JIANG ; Zhuo-ran WANG ; Li JIANG ; Yan BAO ; Yan-xiang CHENG
Chinese Journal of Oncology 2009;31(11):820-825
OBJECTIVETo observe the anti-tumor effect of silencing the expression of HIF-1alpha on cervical cancer in nude mice and to explore its mechanism of action.
METHODSHuman cervical cancer cell line Siha cells were divided into 3 groups: mock control group, control group transfected with scrambled sequence plasmid, and experimental group transfected with pU-HIF-1alpha-shRNA eukaryotic expression plasmid. Cultured cells of the three groups were inoculated in nude mice to establish cervical cancer-bearing nude mice. HIF-1alpha RNAi assay was performed to evaluate the tumor-suppressive effect of HIF-1alpha silencing on cervical cancer-bearing nude mice. Immunohistochemistry and Western blot were used to observe the distribution and protein expression of HIF-1alpha and GLUT1, while RT-PCR was adopted to detect the gene expression of HIF-1alpha, GLUT1 and HKII. The product of glycolysis (lactic acid) and apoptosis in tumor cells were detected by colorimetry and semi-quantitative TUNEL staining, respectively.
RESULTSThe tumor growth in experimental group was significantly slower than that in the two control groups (P < 0.05). On the 50th day after transplantation, the tumor weight in the experimental group was (1.90 +/- 0.28) g, significantly lower than (2.95 +/- 0.77) g in the control group and (2.54 +/- 0.56) g in the mock group (P < 0.01). In the experimental group, the gene and protein levels of HIF-1alpha were 0.45 +/- 0.04 and 1.25 +/- 0.92, and the levels of GLUT1 were 0.32 +/- 0.02 and 1.25 +/- 0.48, respectively. Both indicators in HIF-1alpha and GLUT1 were lower than that in the two control groups (P < 0.05). The expression levels of HKII gene and lactic acid in the experimental group were lower than that in the two control groups (P < 0.05), but the apoptotic cells were much more numerous in the experimental group than that in matched control groups (P < 0.01).
CONCLUSIONThe gene therapy by siRNA targeted silencing of HIF-1alpha may down-regulate its downstream genes GLUT1 and HKII expression, therefore, to reduce the tumor glycolysis activity and promote tumor cell apoptosis, and exert a tumor-suppressing effect in vivo.
Animals ; Apoptosis ; Cell Line, Tumor ; Female ; Gene Silencing ; Genetic Therapy ; Glucose Transporter Type 1 ; genetics ; metabolism ; Hexokinase ; genetics ; metabolism ; Humans ; Hypoxia-Inducible Factor 1, alpha Subunit ; genetics ; metabolism ; Mice ; Mice, Nude ; Neoplasm Transplantation ; Plasmids ; RNA, Messenger ; metabolism ; RNA, Small Interfering ; genetics ; Random Allocation ; Transfection ; Tumor Burden ; Uterine Cervical Neoplasms ; metabolism ; pathology ; therapy

Result Analysis
Print
Save
E-mail