1.Transcriptomics and Metabolomics Analysis to Explore the Ferroptosis Susceptibility of Venetoclax-Resistant AML Cells.
Yue LI ; Jia-Qi WAN ; Xin-Tong YANG ; Bao-Quan SONG ; Fei LI ; Hong-Wei PENG
Journal of Experimental Hematology 2025;33(3):621-632
OBJECTIVE:
To investigate the susceptibility of venetoclax-resistant acute myeloid leukemia (AML) cell lines to ferroptosis and to uncover the underlying molecular mechanisms using transcriptomic and metabolomic analysis methods.
METHODS:
Venetoclax-resistant AML cell lines were constructed using a low-dose concentration escalation method. The sensitivity of cells to chemotherapeutic drugs was detected by CCK-8 assay. The susceptibility of drug-resistant cell lines to ferroptosis was assessed using transcriptomic and metabolomic analysis methods. The expression of cellular GPX4 and SLC7A11 protein was detected by Western blot, and cell death and lipid peroxidation levels were measured by flow cytometry. Depmap database and TCGA cohort were applied to explore the effect of ferroptosis-related genes expression on prognosis.
RESULTS:
Venetoclax-resistant cell lines exhibited sensitivity to ferroptosis inducers RSL3, APR246, and sorafenib. The ferroptosis inhibitor Fer-1 partially inhibited cell death induced by these inducers. Compared with the parental cells, significant changes in metabolites and gene expression levels related to ferroptosis were observed in the resistant cell lines. In particular, deregulated expression of SLC7A11 and GPX4 may play critical role in ferroptosis susceptibility. Besides, GPX4 was identified as more important for AML cell survival and higher GPX4 expression may predict shortened overall survival, NPM1 mutant and IDH1 R132 mutation positive patients may prone to possess higher GPX4 expression.
CONCLUSION
Venetoclax-resistant AML cell lines remain susceptible to ferroptosis, higher GPX4 expression maybe a critical marker for poor prognosis. Regulating the expression of ferroptosis-related genes and metabolites may enhance the efficacy of venetoclax and provide new treatment options for AML patients.
Humans
;
Ferroptosis
;
Leukemia, Myeloid, Acute/metabolism*
;
Sulfonamides/pharmacology*
;
Bridged Bicyclo Compounds, Heterocyclic/pharmacology*
;
Drug Resistance, Neoplasm
;
Metabolomics
;
Cell Line, Tumor
;
Phospholipid Hydroperoxide Glutathione Peroxidase
;
Amino Acid Transport System y+/metabolism*
;
Transcriptome
2.Investigation of the Effects of Arsenic Trioxide Combined with Deslorelin on Proliferation and Apoptosis of Jurkat Cells Based on Wnt/β-Catenin Pathway.
Journal of Experimental Hematology 2025;33(3):640-647
OBJECTIVE:
To investigate the effect of Arsenic trioxide (ATO) combined with Norcantharidin (NCTD) on the proliferation and apoptosis of Jurkat cells, and to evaluate its effect on the proliferation and apoptosis of acute T-lymphoblastic leukemia (T-ALL) based on the Wnt/β-catenin signaling pathway.
METHODS:
Jurkat cell lines were used as the study subjects and treated with different concentrations of ATO (0, 2, 4, 8, 16 μmol/L) and NCTD (0, 10, 25, 50, 100 μmol/L) for 72 hours, and the cell proliferation was detected by CCK-8. Meanwhile, flow cytometry was used to detect the apoptosis rate, EdU staining to detect cell proliferation viability, cell clone formation assay to assess cell cloning ability, Transwell assay to assess cell invasion ability, and Western blot to detect apoptosis and the expression of Wnt/β-catenin signaling pathway-related proteins.
RESULTS:
Compared with the control group, both ATO and NCTD effectively inhibited Jurkat cell proliferation when used alone, and the inhibition effect was more significant when used in combination ( P < 0.05). The combination significantly increased the apoptosis rate of Jurkat cells ( P < 0.05). Meanwhile, the combination significantly decreased the proliferation vitality and clone formation ability of the cells ( P < 0.05), and inhibited the invasion ability of Jurkat cells ( P < 0.05). Western blot analysis showed that the combination of ATO and NCTD significantly up-regulated the expression of pro-apoptotic proteins Bax and E-cadherin, and down-regulated the expression of anti-apoptotic proteins Bcl-2, c-myc and Cyclin D1 ( P < 0.05).
CONCLUSION
The combination of ATO and NCTD had a synergistic effect in inhibiting proliferation and promoting apoptosis in Jurkat cells, which may be related to the inhibition of Wnt/β-catenin signaling pathway.
Humans
;
Apoptosis/drug effects*
;
Jurkat Cells
;
Cell Proliferation/drug effects*
;
Arsenic Trioxide
;
Wnt Signaling Pathway/drug effects*
;
Bridged Bicyclo Compounds, Heterocyclic/pharmacology*
;
beta Catenin/metabolism*
;
Arsenicals/pharmacology*
;
Oxides/pharmacology*
3.Establishment and Mechanistic Study of Venetoclax-Resistant Cell Lines in Acute Myeloid Leukemia.
Kai-Fan LIU ; Ling-Ji ZENG ; Su-Xia GENG ; Xin HUANG ; Min-Ming LI ; Pei-Long LAI ; Jian-Yu WENG ; Xin DU
Journal of Experimental Hematology 2025;33(4):986-997
OBJECTIVE:
To establish venetoclax-resistant acute myeloid leukemia (AML) cell lines, assess the sensitivity of venetoclax-resistant cell lines to the BCL-2 protein family, and investigate their resistance mechanisms.
METHODS:
CCK-8 method was used to screen AML cell lines (MV4-11, MOLM13, OCI-AML2) that were relatively sensitive to venetoclax. Low concentrations of venetoclax continuously induced drug-resistance development in the cell lines. Changes in cell viability and apoptosis rate before and after resistance development were measured using the CCK-8 method and flow cytometry. BH3 profiling assay was performed to anayze the transform of mitochondrion-dependent apoptosis pathway as well as the sensitivity of resistant cell lines to BCL-2 family proteins and small molecule inhibitors. Real-time fluorescence quantitative PCR (RT-qPCR) was utilized to examine changes in the expression levels of BCL-2 protein family members in both venetoclax-resistant cell lines and multidrug-resistant patients.
RESULTS:
Venetoclax-resistant cell lines of MV4-11, MOLM13, and OCI-AML2 were successfully established, with IC50 values exceeding 10-fold. Under the same concentration of venetoclax, the apoptosis rate of resistant cells decreased significantly (P < 0.05). BH3 profiling assay revealed that the drug-resistant cell lines showed increased sensitivity to many pro-apoptotic proteins (such as BIM,BID and NOXA). RT-qPCR showed significantly upregulated MCL1 and downregulated NOXA1 were detected in drug-resistant cell lines. Expression changes in MCL1 and NOXA1 in venetoclax-resistant patients were consistent with our established drug-resistant cell line results.
CONCLUSION
The venetoclax-resistant AML cell lines were successfully established through continuous induction with low concentrations of venetoclax. The venetoclax resistance resulted in alterations in the mitochondrial apoptosis pathway of the cells and an increased sensitivity of cells to pro-apoptotic proteins BIM, BID, and NOXA, which may be associated with the upregulation of MCL1 expression and downregulation of NOXA1 expression in the drug-resistant cells.
Humans
;
Sulfonamides/pharmacology*
;
Drug Resistance, Neoplasm
;
Bridged Bicyclo Compounds, Heterocyclic/pharmacology*
;
Leukemia, Myeloid, Acute/pathology*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Cell Line, Tumor
;
Apoptosis
;
Antineoplastic Agents/pharmacology*
5.Effect of triptolide in improving platelet activation in patients with ankylosing spondylitis by regulating VEGFA,SDF-1,CXCR4 pathway.
Yan-Yan FANG ; Lei WAN ; Wen-Zhe DONG ; Jian-Ting WEN ; Jian LIU
China Journal of Chinese Materia Medica 2019;44(16):3520-3525
The effect of triptolide( TP) on VEGFA,SDF-1,CXCR4 pathway were investigated in vitro to explore the mechanism in improving platelet activation in patients with ankylosing spondylitis( AS). Peripheral blood mononuclear cells( PBMC) were used for the experiment and divided into 4 groups: normal group( NC),model group( MC),triptolide group( TP),and AMD3100 group. The optimal concentration of TP was measured by the MTT method. The expressions of TNF-α,IL-1β,IL-4,IL-10,VEGFA and VEGFR were detected by ELISA. The expressions of SDF-1,CXCR4 and VEGFA were detected by real-time quantitative PCR( RT-qPCR).The expressions of SDF-1,CXCR4,VEGFA and VEGFR were detected by Western blot. The expression levels of CD62 p,CD40 L and PDGFA were detected by immunofluorescence. MTT results showed that medium-dose TP had the strongest inhibitory effect on cells at24 h. The results of ELISA and PCR showed that TP inhibited mRNA expressions of IL-1β,TNF-α,VEGFA,VEGFR and SDF-1,CXCR4 and VEGFA. The results of Western blot indicated that TP inhibited SDF-1,CXCR4 and VEGFA,VEGFR protein expressions; immunofluorescence results indicate that TP can inhibit the expressions of CD62 p,CD40 L,PDGFA. TP may regulate platelet activation by down-regulating SDF-1,CXCR4,VEGFA and VEGFR mRNA expressions,thereby down-regulating IL-1β and TNF-αexpressions,and up-regulating the expressions of IL-4 and IL-10 cytokines.
Cells, Cultured
;
Chemokine CXCL12
;
metabolism
;
Cytokines
;
metabolism
;
Diterpenes
;
pharmacology
;
Epoxy Compounds
;
pharmacology
;
Heterocyclic Compounds
;
pharmacology
;
Humans
;
Leukocytes, Mononuclear
;
drug effects
;
Phenanthrenes
;
pharmacology
;
Platelet Activation
;
Receptors, CXCR4
;
metabolism
;
Spondylitis, Ankylosing
;
Vascular Endothelial Growth Factor A
;
metabolism
6.Lipid metabolism study of sodium norcantharidate in LO2 hepatocytes based on lipidomics.
Li-Juan ZHAO ; Nan SI ; Bo GAO ; Xiao-Lu WEI ; Yan-Li WANG ; Hai-Yu ZHAO ; Bao-Lin BIAN
China Journal of Chinese Materia Medica 2019;44(1):158-166
In order to find the endogenous potential biomarkers of in vitro hepatic injury caused by NCTD-Na and elucidate the mechanism of hepatic injury of NCTD-Na,ultra-high performance liquid chromatography coupled quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) was used for lipidomics detection.Multivariate statistical analysis was used to study the endogenous lipid metabolic changes of human normal liver cells LO2 injury after the treatment with sodium norcantharidate(NCTD-Na).The results showed that the half maximal inhibitory concentration(IC50) of NCTD-Na was 0.034 mmol·L-1.A total of 280 differential metabolites were found between the control group and the low-dose group,with VIP > 2.0 and P<0.05.At the same time,a total of 273 differential metabolites were found between the control group and the high-dose group,with VIP > 2.0 and P<0.05.Cell metabolite profiles showed clear separation among control group,the low-dose group and the high-dose group,and 111 differential metabolites were found,with VIP > 2.0,P<0.05,RSD<30% and in a dose-dependent manner.It was found that most of the above differential metabolites were lipid metabolites after the analysis of simple preparnation methods and database search.A total of 32 potential biomarkers were identified,including 3 phosphatidylcholine(PC),5 lysophosphatidylcholine(Lyso PC),3 ceramide(Cer),1 sphingomyelin(SM),1 phosphatidylethanolamine(PE),10 lysophosphatidylethanolamine(LysoPE),4 diacylglycerol(DG),1 Phosphatidic acid(PA),1 lysophosphatidic acid(Lyso PA),1 phosphatidyl glycerol(PG),1 fatty acid hydroxy fatty acid(FAHFA) and 1 phosphatidylserine(PS).The changes of PCs,Cers,SM,PE and DGs were closely related liver protection,DNA methylation and self-repair in hepatocytes,apoptosis,methylation and detoxification of carcinogens,as well as lipid peroxides production process.Also,they had impact on the proliferation of hepatocytes,differentiation and gene transcription disorders.Cells stimulated by NCTD-Na could promote the production of PA as well as the synthesis and catabolism of FAHFA in a variety of ways.The levels of Lyso PCs,LysoPEs and Lyso PA were correlated with PCs,PE and PA;PE and PS might have valgus during apoptosis,triggering phagocytosis.
Bridged Bicyclo Compounds, Heterocyclic
;
pharmacology
;
Cells, Cultured
;
Hepatocytes
;
drug effects
;
metabolism
;
Humans
;
Lipid Metabolism
;
Lipids
;
analysis
;
Tandem Mass Spectrometry
7.Protective Effect of Norcantharidin on Collagen-Induced Arthritis Rats.
Hong-Bo SHEN ; Ze-Jun HUO ; Yun-Jing BAI ; Xiao-Juan HE ; Chang-Hong LI ; Yu-Kun ZHAO ; Qing-Qing GUO
Chinese journal of integrative medicine 2018;24(4):278-283
OBJECTIVETo observe the effect of norcantharidin (NCTD) on collagen-induced arthritis (CIA) rats.
METHODSSixty Sprague-Dawley(SD) rats were randomly divided into 6 groups (n=10): normal group, CIA model group(model group), NCTD low-dose group [1.35 mg/(kg•d)], NCTD middle-dose group [2.7 mg/(kg•d)], NCTD high-dose group [5.4 mg/(kg•d)] and methotrexate (MTX) group [1.8 mg/(kg/w)]. Anesthetized rats were sacrificed by luxation of cervical vertebra after 4 weeks of administration. The arthritis scores were evaluated twice a week. The pathological changes in the ankle joints of rats were observed by hematoxylin-eosin (H&E) staining. The serum levels of interleukin (IL) 1β, IL-6, tumor necrosis factor (TNF)-α, vascular endothelial growth factor (VEGF), IL-17 and transform growth factor (TGF) β were detected by enzyme linked immunosorbent assay (ELISA). The mRNA expression of retinoid-related orphan nuclear receptorγt (RORγt) and forkhead box P3 (Foxp3) in peripheral blood lymphocytes were confirmed by real-time polymerase chain reaction.
RESULTSMTX and high-dose NCTD not only decreased the arthritis scores but also alleviated the pathological changes in CIA rats' ankle joints compared with the model group (P<0.05 or P<0.01). All doses of NCTD significantly inhibited the serum levels of IL-6, IL-17 and TNF-α in CIA rats (P<0.05). Only middle- and high-dose of NCTD prominently decreased serum IL-1β and TGF-β levels of CIA rats (P<0.05). However, NCTD has no effect on vascular endothelial growth factor (VEGF) level in CIA rats. The Foxp3 mRNA expression in all NCTD groups were increased significantly than in the model group (P<0.05). The mRNA expression of RORγt in NCTD high-dose group was decreased apparently in comparison with the model group (P<0.05).
CONCLUSIONSNCTD showed therapeutic effect on CIA rats by inhibition of cytokines and regulation of Th17/Treg cells.
Animals ; Arthritis, Experimental ; blood ; drug therapy ; pathology ; Bridged Bicyclo Compounds, Heterocyclic ; pharmacology ; therapeutic use ; Cytokines ; blood ; Forkhead Transcription Factors ; metabolism ; Joints ; drug effects ; pathology ; Male ; Nuclear Receptor Subfamily 1, Group F, Member 3 ; metabolism ; RNA, Messenger ; genetics ; metabolism ; Rats, Sprague-Dawley
8.Inhibitory effects of SRT1720 on the apoptosis of rabbit chondrocytes by activating SIRT1 via p53/bax and NF-κB/PGC-1α pathways.
Bi LIU ; Ming LEI ; Tao HU ; Fei YU ; De-Ming XIAO ; Hao KANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):350-355
SRT1720, a new discovered drug, was reported to activate silent information regulator 1 (SIRT1) and inhibit the chondrocyte apoptosis. However, the underlying mechanism remains elusive. In the present study, the chondrocytes were extracted from the cartilage tissues of New Zealand white rabbits, cultured in the presence of sodium nitroprusside (SNP) (2.5 mmol/L) and divided into five groups: 1, 5, 10, and 20 μmol/L SRT1720 groups and blank control group (0 μmol/L SRT1720). MTT assay was used to detect the chondrocyte viability and proliferation, and DAPI staining and flow cytometry to measure the chondrocyte apoptosis. The expression levels of SIRT1, p53, NF-κB/p65, Bax, and peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) were detected by Western blotting and the expression levels of SIRT1, type II collagen, and aggrecan mRNA by RT-PCR. The results showed that in the SRT1720-treated groups, the nuclei of chondrocytes were morphologically intact and had uniform chromatin. In the blank control group, nuclear rupture into debris was observed in chondrocytes. With the SRT1720 concentration increasing, the chondrocyte viability increased, the apoptosis rate decreased, the protein expression levels of SIRT1 and PGC-1α and the mRNA expression levels of type II collagen and aggrecan increased ({ptP}<0.05), and the expression levels of p53, NF-κB and bax decreased (P<0.05). It was suggested that SRT1720 inhibits chondrocyte apoptosis by activating the expression of SIRT1 via p53/bax and NF-κB/PGC-1α pathways.
Aggrecans
;
genetics
;
metabolism
;
Animals
;
Apoptosis
;
drug effects
;
Cartilage, Articular
;
cytology
;
drug effects
;
metabolism
;
Cell Proliferation
;
drug effects
;
Cell Survival
;
drug effects
;
Chondrocytes
;
cytology
;
drug effects
;
metabolism
;
Chromatin
;
chemistry
;
drug effects
;
metabolism
;
Collagen Type II
;
genetics
;
metabolism
;
Gene Expression Regulation
;
Heterocyclic Compounds, 4 or More Rings
;
pharmacology
;
Nitroprusside
;
toxicity
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
;
genetics
;
metabolism
;
Primary Cell Culture
;
Rabbits
;
Signal Transduction
;
drug effects
;
genetics
;
Sirtuin 1
;
genetics
;
metabolism
;
Transcription Factor RelA
;
genetics
;
metabolism
;
Tumor Suppressor Protein p53
;
genetics
;
metabolism
;
bcl-2-Associated X Protein
;
genetics
;
metabolism
9.Exenatide promotes chemotactic migration of adipose-derived stem cells through SDF-1/CXCR-4/Rho GTPase pathway.
Qiang MA ; Jun-Jie YANG ; Hao ZHOU ; Ying ZHANG ; Yun-Dai CHEN
Journal of Southern Medical University 2016;36(8):1034-1040
OBJECTIVETo investigate the effect of exenatide on chemotactic migration of adipose-derived stem cells (ADSCs) and confirm that Rho GTPase is the downstream effector protein of SDF-1/CXCR-4 migration pathway.
METHODSADSCs were isolated, cultured, identified by flow cytometry, and induced to differentiate in vitro. RTCA xCELLigence system was used to analyze the effect of exenatide on ADSC proliferation. The effects of exenatide at different concentrations, AMD3100 (CXCR-4 antagonist), and CCG-1423 (Rho GTPase antagonist) on chemotactic migration of ADSCs were tested using Transwell assay. The expression of CXCR-4 in exenatide-treated ADSCs was measured by flow cytometry and Western blotting. Active Rho pull-down detection kit was used to detect the expression of Rho GTPase. Laser confocal microscopy was used to observe the formation of stress fibers in ADSCs with different treatments.
RESULTSExenatide treatment for 24 h had no significant effect on ADSC proliferation. Exenatide obviously promoted chemotactic migration of ADSCs in a concentration-dependent manner, and this effect was blocked by either AMD3100 or CCG-1423. Both flow cytometry and Western blotting showed that exenatide dose-dependently up-regulated CXCR-4 expression in ADSCs. Western blotting showed that the expression of Rho GTPase was related to SDF-1/CXCR-4 pathway, and laser confocal microscopy revealed that the formation of stress fibers in ADSCs was related to SDF-1/CXCR-4/ Rho GTPase pathway.
CONCLUSIONExenatide promotes chemotactic migration of ADSCs, and Rho GTPase is the downstream effector protein of SDF-1/CXCR-4 pathway.
Adipose Tissue ; cytology ; Anilides ; pharmacology ; Benzamides ; pharmacology ; Cells, Cultured ; Chemokine CXCL12 ; metabolism ; Chemotaxis ; Heterocyclic Compounds ; pharmacology ; Humans ; Peptides ; pharmacology ; Receptors, CXCR4 ; antagonists & inhibitors ; metabolism ; Signal Transduction ; Stem Cells ; cytology ; Venoms ; pharmacology ; rho GTP-Binding Proteins ; antagonists & inhibitors ; metabolism
10.Yap1 plays a protective role in suppressing free fatty acid-induced apoptosis and promoting beta-cell survival.
Yaoting DENG ; Yurika MATSUI ; Wenfei PAN ; Qiu LI ; Zhi-Chun LAI
Protein & Cell 2016;7(5):362-372
Mammalian pancreatic β-cells play a pivotal role in development and glucose homeostasis through the production and secretion of insulin. Functional failure or decrease in β-cell number leads to type 2 diabetes (T2D). Despite the physiological importance of β-cells, the viability of β-cells is often challenged mainly due to its poor ability to adapt to their changing microenvironment. One of the factors that negatively affect β-cell viability is high concentration of free fatty acids (FFAs) such as palmitate. In this work, we demonstrated that Yes-associated protein (Yap1) is activated when β-cells are treated with palmitate. Our loss- and gain-of-function analyses using rodent insulinoma cell lines revealed that Yap1 suppresses palmitate-induced apoptosis in β-cells without regulating their proliferation. We also found that upon palmitate treatment, re-arrangement of F-actin mediates Yap1 activation. Palmitate treatment increases expression of one of the Yap1 target genes, connective tissue growth factor (CTGF). Our gain-of-function analysis with CTGF suggests CTGF may be the downstream factor of Yap1 in the protective mechanism against FFA-induced apoptosis.
Actins
;
metabolism
;
Adaptor Proteins, Signal Transducing
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Animals
;
Apoptosis
;
drug effects
;
physiology
;
Bridged Bicyclo Compounds, Heterocyclic
;
pharmacology
;
Cell Line, Tumor
;
Connective Tissue Growth Factor
;
genetics
;
metabolism
;
pharmacology
;
Cytochalasin D
;
pharmacology
;
Fatty Acids, Nonesterified
;
pharmacology
;
HEK293 Cells
;
Humans
;
Immunohistochemistry
;
Insulin-Secreting Cells
;
cytology
;
drug effects
;
metabolism
;
Mice
;
Microscopy, Fluorescence
;
Palmitic Acid
;
pharmacology
;
Phosphoproteins
;
antagonists & inhibitors
;
genetics
;
metabolism
;
RNA Interference
;
RNA, Small Interfering
;
metabolism
;
Rats
;
Recombinant Proteins
;
genetics
;
metabolism
;
pharmacology
;
Thiazolidines
;
pharmacology

Result Analysis
Print
Save
E-mail