2.Olaparib induced senescence under P16 or P53 dependent manner in ovarian cancer
Zehua WANG ; Jianwen GAO ; Jiabing ZHOU ; Haiou LIU ; Congjian XU
Journal of Gynecologic Oncology 2019;30(2):e26-
OBJECTIVE: Poly (ADP-ribose) polymerase (PARP) is an important molecule in the early stress response of DNA damage, which is involved in DNA damage repair and cellular senescence. Olaparib, as PARP inhibitor, has an anti-tumor effect on high grade serous ovarian cancer, but its effects on cellular senescence have not been reported. This study intends to explore the role of olaparib in the regulation of senescence in ovarian cancer cells. METHODS: The effects of olaparib on the senescence of ovarian cancer cells were detected by using the senescence-associated β-galactosidase (SA-β-Gal) and senescence-associated heterochromatin aggregation (SAHF). Quantitative real-time polymerase chain reaction was used to analyze the senescence-associated secretory phenotype (SASP). Cell cycle and apoptosis were detected by flow cytometry. The effect of olaparib on tumor growth was analyzed in a nude mouse xenograft transplantation model. RESULTS: Long-term (6 days) treatment with olaparib (5 μM) significantly inhibited the growth of ovarian cancer cells, leading to arrest the cell cycle at G0/G1 phase, significant increase the number of positive SA-β-Gal stained cells and positive SAHF cells. The expression of P16 and retinoblastoma protein (p-RB) were significantly enhanced in SKOV3 cells under olaparib treated, meanwhile, the expression of P53 and p-RB were upregulated in A2780 cells. In OVCAR-3 cells, the expression of P53 was downregulated and p-RB was upregulated. Mice with SKOV3 xenograft transplantation was given olaparib (10 mg/kg/day) via abdominal cavity administration, the tumor volume was reduced (p < 0.01). CONCLUSION: Continuous low dosage administration of olaparib induced senescence under P16 or P53 dependent manner in ovarian cancer.
Abdominal Cavity
;
Aging
;
Animals
;
Apoptosis
;
Cell Aging
;
Cell Cycle
;
DNA Damage
;
Flow Cytometry
;
Heterochromatin
;
Mice
;
Mice, Nude
;
Ovarian Neoplasms
;
Phenotype
;
Real-Time Polymerase Chain Reaction
;
Retinoblastoma Protein
;
Transplantation, Heterologous
;
Tumor Burden
3.Suppressor of Variegation 3–9 Homolog 2, a Novel Binding Protein of Translationally Controlled Tumor Protein, Regulates Cancer Cell Proliferation
A Reum KIM ; Jee Young SUNG ; Seung Bae RHO ; Yong Nyun KIM ; Kyungsil YOON
Biomolecules & Therapeutics 2019;27(2):231-239
Suppressor of Variegation 3–9 Homolog 2 (SUV39H2) methylates the lysine 9 residue of histone H3 and induces heterochromatin formation, resulting in transcriptional repression or silencing of target genes. SUV39H1 and SUV39H2 have a role in embryonic development, and SUV39H1 was shown to suppress cell cycle progression associated with Rb. However, the function of human SUV39H2 has not been extensively studied. We observed that forced expression of SUV39H2 decreased cell proliferation by inducing G1 cell cycle arrest. In addition, SUV39H2 was degraded through the ubiquitin-proteasomal pathway. Using yeast two-hybrid screening to address the degradation mechanism and function of SUV39H2, we identified translationally controlled tumor protein (TCTP) as an SUV39H2-interacting molecule. Mapping of the interacting regions indicated that the N-terminal 60 amino acids (aa) of full-length SUV39H2 and the C-terminus of TCTP (120–172 aa) were critical for binding. The interaction of SUV39H2 and TCTP was further confirmed by co-immunoprecipitation and immunofluorescence staining for colocalization. Moreover, depletion of TCTP by RNAi led to up-regulation of SUV39H2 protein, while TCTP overexpression reduced SUV39H2 protein level. The half-life of SUV39H2 protein was significantly extended upon TCTP depletion. These results clearly indicate that TCTP negatively regulates the expression of SUV39H2 post-translationally. Furthermore, SUV39H2 induced apoptotic cell death in TCTP-knockdown cells. Taken together, we identified SUV39H2, as a novel target protein of TCTP and demonstrated that SUV39H2 regulates cell proliferation of lung cancer cells.
Amino Acids
;
Apoptosis
;
Carrier Proteins
;
Cell Cycle
;
Cell Death
;
Cell Proliferation
;
Embryonic Development
;
Female
;
Fluorescent Antibody Technique
;
G1 Phase Cell Cycle Checkpoints
;
Half-Life
;
Heterochromatin
;
Histones
;
Humans
;
Immunoprecipitation
;
Lung Neoplasms
;
Lysine
;
Mass Screening
;
Pregnancy
;
Repression, Psychology
;
RNA Interference
;
Up-Regulation
;
Yeasts
4.Targeted Downregulation of kdm4a Ameliorates Tau-engendered Defects in Drosophila melanogaster
Sung Yeon PARK ; Jieun SEO ; Yang Sook CHUN
Journal of Korean Medical Science 2019;34(33):e225-
BACKGROUND: Tauopathies, a class of neurodegenerative diseases that includes Alzheimer's disease (AD), are characterized by the deposition of neurofibrillary tangles composed of hyperphosphorylated tau protein in the human brain. As abnormal alterations in histone acetylation and methylation show a cause and effect relationship with AD, we investigated the role of several Jumonji domain-containing histone demethylase (JHDM) genes, which have yet to be studied in AD pathology. METHODS: To examine alterations of several JHDM genes in AD pathology, we performed bioinformatics analyses of JHDM gene expression profiles in brain tissue samples from deceased AD patients. Furthermore, to investigate the possible relationship between alterations in JHDM gene expression profiles and AD pathology in vivo, we examined whether tissue-specific downregulation of JHDM Drosophila homologs (kdm) can affect tauR406W-induced neurotoxicity using transgenic flies containing the UAS-Gal4 binary system. RESULTS: The expression levels of JHDM1A, JHDM2A/2B, and JHDM3A/3B were significantly higher in postmortem brain tissue from patients with AD than from non-demented controls, whereas JHDM1B mRNA levels were downregulated in the brains of patients with AD. Using transgenic flies, we revealed that knockdown of kdm2 (homolog to human JHDM1), kdm3 (homolog to human JHDM2), kdm4a (homolog to human JHDM3A), or kdm4b (homolog to human JHDM3B) genes in the eye ameliorated the tauR406W-engendered defects, resulting in less severe phenotypes. However, kdm4a knockdown in the central nervous system uniquely ameliorated tauR406W-induced locomotion defects by restoring heterochromatin. CONCLUSION: Our results suggest that downregulation of kdm4a expression may be a potential therapeutic target in AD.
Acetylation
;
Alzheimer Disease
;
Brain
;
Central Nervous System
;
Computational Biology
;
Diptera
;
Down-Regulation
;
Drosophila melanogaster
;
Drosophila
;
Heterochromatin
;
Histones
;
Humans
;
Locomotion
;
Methylation
;
Neurodegenerative Diseases
;
Neurofibrillary Tangles
;
Pathology
;
Phenotype
;
RNA, Messenger
;
tau Proteins
;
Tauopathies
;
Transcriptome
6.Prenatal diagnosis of interchromosomal insertion of Y chromosome heterochromatin in a family.
Bom Yi LEE ; Ju Yeon PARK ; Yeon Woo LEE ; Ah Rum OH ; Shin Young LEE ; So Yeon PARK ; Hyun Mee RYU ; Si Won LEE
Journal of Genetic Medicine 2017;14(2):62-66
Interchromosomal insertion of Y chromosome heterochromatin in an autosome was identified in a fetus and a family. A fetal karyotype was analyzed as 46,XX,dup(7)(?q22q21.1) in a referred amniocentesis at 16 weeks of gestation for advanced maternal age. In the familial karyotype analyses for identification of der(7), the mother, the first daughter and the maternal grandmother showed the same der(7) as the fetus's. CBG-banding was positive at 7q22 region of der(7) that indicated inserted material was originated from heterochromatin. The origin of heterochromatic insertion region in der(7) of the fetus and the mother was found in Yq12 region by fluorescent in situ hybridization with a DYZ1 probe. In the specific analysis of Y chromosomal heterochromatic region of ins(7;Y) of the mother, 15 sequence tagged sites from Yp11.3 region including SRY to Yq11.223 region was not detected. Final karyotypes of the mother, the first daughter and the maternal grandmother were reported as 46,XX,der(7)ins(7;Y)(q21.3;q12q12). All female carriers of ins(7;Y) in the family showed normal phenotype and the mother and the maternal grandmother were fertile. A healthy girl was born at term. We report a rare case of familial interchromosomal insertion of Y chromosome heterochromatin detected only in female family members with normal phenotype that was diagnosed prenatally.
Amniocentesis
;
Female
;
Fetus
;
Grandparents
;
Heterochromatin*
;
Humans
;
In Situ Hybridization, Fluorescence
;
Karyotype
;
Maternal Age
;
Mothers
;
Nuclear Family
;
Phenotype
;
Pregnancy
;
Prenatal Diagnosis*
;
Sequence Tagged Sites
;
Y Chromosome*
7.Sperm DNA fragmentation and sex chromosome aneuploidy after swim-up versus density gradient centrifugation.
Sung Woo KIM ; Byung Chul JEE ; Seul Ki KIM ; Seok Hyun KIM
Clinical and Experimental Reproductive Medicine 2017;44(4):201-206
OBJECTIVE: The aim of this study was to compare the efficacy of swim-up and density gradient centrifugation (DGC) for reducing the amount of sperm with fragmented DNA, sex chromosome aneuploidy, and abnormal chromatin structure. METHODS: Semen samples were obtained from 18 healthy male partners who attended infertility clinics for infertility investigations and were processed with swim-up and DGC. The percentages of sperm cells with fragmented DNA measured by the sperm chromatin dispersion test, normal sex chromosomes assessed by fluorescence in situ hybridization, and abnormal chromatin structure identified by toluidine blue staining were examined. RESULTS: The percentage of sperm cells with fragmented DNA was significantly lower in the swim-up fraction (9.7%, p=0.001) than in the unprocessed fraction (27.0%), but not in the DGC fraction (27.8%, p=0.098). The percentage of sperm cells with normal X or Y chromosomes was comparable in the three fractions. The percentage of sperm cells with abnormal chromatin structure significantly decreased after DGC (from 15.7% to 10.3%, p=0.002). The swim-up method also tended to reduce the percentage of sperm cells with abnormal chromatin structure, but the difference was not significant (from 15.7% to 11.6%, p=0.316). CONCLUSION: The swim-up method is superior for enriching genetically competent sperm.
Aneuploidy*
;
Centrifugation, Density Gradient*
;
Chromatin
;
DNA Fragmentation*
;
DNA*
;
Fluorescence
;
Humans
;
In Situ Hybridization
;
Infertility
;
Male
;
Methods
;
Semen
;
Sex Chromosomes*
;
Spermatozoa*
;
Tolonium Chloride
;
Y Chromosome
8.Interactome Analysis Reveals that Heterochromatin Protein 1gamma (HP1gamma) Is Associated with the DNA Damage Response Pathway.
Hongtae KIM ; Jae Duk CHOI ; Byung Gyu KIM ; Ho Chul KANG ; Jong Soo LEE
Cancer Research and Treatment 2016;48(1):322-333
PURPOSE: Heterochromatin protein 1gamma (HP1gamma) interacts with chromosomes by binding to lysine 9-methylated histone H3 or DNA/RNA. HP1gamma is involved in various biological processes. The purpose of this study is to gain an understanding of how HP1gamma functions in these processes by identifying HP1gamma-binding proteins using mass spectrometry. MATERIALS AND METHODS: We performed affinity purification of HP1gamma-binding proteins using G1/S phase or prometaphase HEK293T cell lysates that transiently express mock or FLAG-HP1gamma. Coomassie staining was performed for HP1gamma-binding complexes, using cell lysates prepared by affinity chromatography FLAG-agarose beads, and the bands were digested and then analyzed using a mass spectrometry. RESULTS: We identified 99 HP1gamma-binding proteins with diverse cellular functions, including spliceosome, regulation of the actin cytoskeleton, tight junction, pathogenic Escherichia coli infection, mammalian target of rapamycin signaling pathway, nucleotide excision repair, DNA replication, homologous recombination, and mismatch repair. CONCLUSION: Our results suggested that HP1gamma is functionally active in DNA damage response via protein-protein interaction.
Actin Cytoskeleton
;
Biological Processes
;
Chromatography, Affinity
;
DNA Damage*
;
DNA Mismatch Repair
;
DNA Repair
;
DNA Replication
;
DNA*
;
Escherichia coli Infections
;
Heterochromatin*
;
Histones
;
Homologous Recombination
;
Lysine
;
Mass Spectrometry
;
Prometaphase
;
Sirolimus
;
Spliceosomes
;
Tight Junctions
9.Vitamin C alleviates aging defects in a stem cell model for Werner syndrome.
Ying LI ; Weizhou ZHANG ; Liang CHANG ; Yan HAN ; Liang SUN ; Xiaojun GONG ; Hong TANG ; Zunpeng LIU ; Huichao DENG ; Yanxia YE ; Yu WANG ; Jian LI ; Jie QIAO ; Jing QU ; Weiqi ZHANG ; Guang-Hui LIU
Protein & Cell 2016;7(7):478-488
Werner syndrome (WS) is a premature aging disorder that mainly affects tissues derived from mesoderm. We have recently developed a novel human WS model using WRN-deficient human mesenchymal stem cells (MSCs). This model recapitulates many phenotypic features of WS. Based on a screen of a number of chemicals, here we found that Vitamin C exerts most efficient rescue for many features in premature aging as shown in WRN-deficient MSCs, including cell growth arrest, increased reactive oxygen species levels, telomere attrition, excessive secretion of inflammatory factors, as well as disorganization of nuclear lamina and heterochromatin. Moreover, Vitamin C restores in vivo viability of MSCs in a mouse model. RNA sequencing analysis indicates that Vitamin C alters the expression of a series of genes involved in chromatin condensation, cell cycle regulation, DNA replication, and DNA damage repair pathways in WRN-deficient MSCs. Our results identify Vitamin C as a rejuvenating factor for WS MSCs, which holds the potential of being applied as a novel type of treatment of WS.
Animals
;
Ascorbic Acid
;
pharmacology
;
Cell Cycle Checkpoints
;
drug effects
;
Cell Line
;
Cellular Senescence
;
drug effects
;
DNA Damage
;
DNA Repair
;
drug effects
;
DNA Replication
;
drug effects
;
Disease Models, Animal
;
Heterochromatin
;
metabolism
;
pathology
;
Humans
;
Mesenchymal Stem Cells
;
metabolism
;
pathology
;
Mice
;
Nuclear Lamina
;
metabolism
;
pathology
;
Reactive Oxygen Species
;
metabolism
;
Telomere Homeostasis
;
drug effects
;
Werner Syndrome
;
drug therapy
;
genetics
;
metabolism
10.The Heterochromatin-1 Phosphorylation Contributes to TPA-Induced AP-1 Expression.
Biomolecules & Therapeutics 2014;22(4):308-313
Activator protein-1 (AP-1) is an inducible transcription factor that contributes to the generation of chronic inflammation in response to oxidative and electrophilic stress. Previous studies have demonstrated that the PI3K/Akt1 pathway plays an important role in the transcriptional regulation of AP-1 expression. Although the histone post-translational modifications (PTMs) are assumed to affect the AP-1 transcriptional regulation by the PI3K/Akt pathway, the detailed mechanisms are completely unknown. In the present study, we show that heterochromatin 1 gamma (HP1gamma) plays a negative role in TPA-induced c-Jun and c-Fos expression. We show that TPA-induced Akt1 directly phosphorylates HP1gamma, abrogates its suppressive function and increases the interaction between histone H3 and 14-3-3epsilon. Collectively, these our data illustrate that the activation of PI3K/Akt pathway may play a permissive role in the recruitment of histone readers or other coactivators on the chromatin, thereby affecting the degree of AP-1 transcription.
Chromatin
;
Heterochromatin
;
Histones
;
Inflammation
;
Phosphorylation*
;
Protein Processing, Post-Translational
;
Transcription Factor AP-1*
;
Transcription Factors

Result Analysis
Print
Save
E-mail