1.Hesperetin Relaxes Depolarizing Contraction in Human Umbilical Vein by Inhibiting L-Type Ca2+ Channel.
Kritsana TIPCOME ; Wattana B WATANAPA ; Katesirin RUAMYOD
Chinese journal of integrative medicine 2025;31(5):412-421
OBJECTIVE:
To study hesperetin-induced vasorelaxation after depolarizing contraction in human umbilical veins (HUVs) to elucidate the role of L-type Ca2+ channel (LTCC) and related signaling pathway.
METHODS:
Isometric tension recording was performed in HUV rings pre-contracted with K+. Hesperetin relaxing mechanism was investigated using a LTCC opener (BayK8644) and blockers of cyclic nucleotides and phosphodiesterases (PDEs). Whole-cell patch-clamping in A7r5 cells, a rat vascular smooth muscle cell line, was performed to study the effect of hesperetin on LTCC current.
RESULTS:
After depolarizing precontraction, hesperetin induced HUV relaxation concentration-dependently and endothelium-independently; 1 mmol/L hesperetin reduced denuded HUV ring tension by 68.7% ± 4.3% compared to matching vehicle, osmolality, and time controls (P<0.0001). Importantly, hesperetin competitively inhibited BayK8644-induced contraction, shifting the half maximal effective concentration of BayK8644 response from 1.08 nmol/L [95% confidence interval (CI) 0.49-2.40] in vehicle control to 11.30 nmol/L (95% CI 5.45-23.41) in hesperetin (P=0.0001). Moreover, hesperetin elicited further vasorelaxation in denuded HUV rings pretreated with inhibitors of soluble guanylyl cyclase, adenylyl cyclase, PDE3, PDE4, and PDE5 (P<0.01), while rings pretreated with PDE1 inhibitors could not be relaxed by hesperetin (P>0.05). However, simultaneously applying inhibitors of soluble guanylyl cyclase and adenylyl cyclase could not inhibit hesperetin's effect (P>0.05). In whole-cell patch-clamping, hesperetin rapidly decreased LTCC current in A7r5 cells to 66.7% ± 5.8% (P=0.0104).
CONCLUSIONS
Hesperetin diminishes depolarizing contraction of human vascular smooth muscle through inhibition of LTCC, and not cyclic nucleotides nor PDEs. Our evidence supports direct LTCC interaction and provides additional basis for the use of hesperetin and its precursor hesperidin as vasodilators and may lead to future vasodilator drug development as a treatment alternative for cardiovascular diseases.
Hesperidin/pharmacology*
;
Humans
;
Calcium Channels, L-Type/metabolism*
;
Umbilical Veins/physiology*
;
Muscle Contraction/drug effects*
;
Animals
;
Rats
;
Calcium Channel Blockers/pharmacology*
;
Vasodilation/drug effects*
;
Muscle Relaxation/drug effects*
2.Effect of Hesperidin on Chronic Unpredictable Mild Stress-Related Depression in Rats through Gut-Brain Axis Pathway.
Hui-Qing LIANG ; Shao-Dong CHEN ; Yu-Jie WANG ; Xiao-Ting ZHENG ; Yao-Yu LIU ; Zhen-Ying GUO ; Chun-Fang ZHANG ; Hong-Li ZHUANG ; Si-Jie CHENG ; Xiao-Hong GU
Chinese journal of integrative medicine 2025;31(10):908-917
OBJECTIVES:
To determine the pharmacological impact of hesperidin, the main component of Citri Reticulatae Pericarpium, on depressive behavior and elucidate the mechanism by which hesperidin treats depression, focusing on the gut-brain axis.
METHODS:
Fifty-four Sprague Dawley male rats were randomly allocated to 6 groups using a random number table, including control, model, hesperidin, probiotics, fluoxetine, and Citri Reticulatae Pericarpium groups. Except for the control group, rats in the remaining 5 groups were challenged with chronic unpredictable mild stress (CUMS) for 21 days and housed in single cages. The sucrose preference test (SPT), immobility time in the forced swim test (FST), and number in the open field test (OFT) were performed to measure the behavioral changes in the rats. Enzyme-linked immunosorbent assay was used to determine the levels of 5-hydroxytryptamine (5-HT) and brain-derived neurotrophic factor (BDNF) in brain tissue, and the histopathology was performed to evaluate the changes of colon tissue, together with sequencing of the V3-V4 regions of 16S rRNA gene on feces to explore the changes of intestinal flora in the rats.
RESULTS:
Compared to the control group, the rats in the model group showed notable reductions in body weight, SPF, and number in OFT (P<0.01). Hesperidin was found to ameliorate depression induced by CUMS, as seen by improvements in body weight, SPT, immobility time in FST, and number in OFT (P<0.05 or P<0.01). Regarding neurotransmitters, it was found that at a dose of 50 mg/kg hesperidin treatment upregulated the levels of 5-HT and BDNF in depressed rats (P<0.05). Compared to the control group, the colon tissue of the model group exhibited greater inflammatory cell infiltration, with markedly reduced numbers of goblet cells and crypts and were significantly improved following treatment with hesperidin. Simultaneously, the administration of hesperidin demonstrated a positive impact on the gut microbiome of rats treated with CUMS, such as Shannon index increased and Simpson index decreased (P<0.01), while the abundance of Pseudomonadota and Bacteroidota increased in the hesperidin-treated group (P<0.05).
CONCLUSION
The mechanism responsible for the beneficial effects of hesperidin on depressive behavior in rats may be related to inhibition of the expressions of BDNF and 5-HT and preservation of the gut microbiota.
Animals
;
Hesperidin/therapeutic use*
;
Rats, Sprague-Dawley
;
Depression/drug therapy*
;
Male
;
Stress, Psychological/drug therapy*
;
Brain/metabolism*
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Serotonin/metabolism*
;
Gastrointestinal Microbiome/drug effects*
;
Behavior, Animal/drug effects*
;
Rats
;
Brain-Gut Axis/drug effects*
;
Chronic Disease
;
Colon/drug effects*
3.Hesperidin Suppressed Colorectal Cancer through Inhibition of Glycolysis.
Ke-Xiang SUN ; Wei-Shan TAN ; Hao-Yue WANG ; Jia-Min GAO ; Shu-Yun WANG ; Man-Li XIE ; Wan-Li DENG
Chinese journal of integrative medicine 2025;31(6):529-540
OBJECTIVE:
To explore the role of the natural compound hesperidin in glycolysis, the key ratelimiting enzyme, in colorectal cancer (CRC) cell lines.
METHODS:
In vitro, HCT116 and SW620 were treated with different doses of hesperidin (0-500 µmol/L), cell counting kit-8 and colone formation assays were utilized to detected inhibition effect of hesperidin on CRC cell lines. Transwell and wound healing assays were performed to detect the ability of hesperidin (0, 25, 50 and 75 µmol/L) to migrate CRC cells. To confirm the apoptotic-inducing effect of hesperidin, apoptosis and cycle assays were employed. Western blot, glucose uptake, and lactate production determination measurements were applied to determine inhibitory effects of hesperidin (0, 25 and 50 µmol/L) on glycolysis. In vivo, according to the random number table method, nude mice with successful tumor loading were randomly divided into vehicle, low-dose hesperidin (20 mg/kg) and high-dose hesperidin (60 mg/kg) groups, with 6 mice in each group. The body weights and tumor volumes of mice were recorded during 4-week treatment. The expression of key glycolysis rate-limiting enzymes was determined using Western blot, and glucose uptake and lactate production were assessed. Finally, protein interactions were probed with DirectDIA Quantitative Proteomics, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses.
RESULTS:
Hesperidin could inhibit CRC cell line growth (P<0.05 or P<0.01). Moreover, hesperidin presented an inhibitory effect on the migrating abilities of CRC cells. Hesperidin also promoted apoptosis and cell cycle alterations (P<0.05). The immunoblotting results manifested that hesperidin decreased the levels of hexokinase 2, glucose transporter protein 1 (GLUT1), GLUT3, L-lactate dehydrogenase A, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 (PFKFB2), PFKFB3, and pyruvate kinase isozymes M2 (P<0.01). It remarkably suppressed tumor xenograft growth in nude mice. GO and KEGG analyses showed that hesperidin treatment altered metabolic function.
CONCLUSION
Hesperidin inhibits glycolysis and is a potential therapeutic choice for CRC treatment.
Hesperidin/therapeutic use*
;
Colorectal Neoplasms/metabolism*
;
Glycolysis/drug effects*
;
Animals
;
Humans
;
Apoptosis/drug effects*
;
Mice, Nude
;
Cell Movement/drug effects*
;
Cell Line, Tumor
;
Cell Proliferation/drug effects*
;
Glucose/metabolism*
;
Cell Cycle/drug effects*
;
Mice, Inbred BALB C
;
Mice
;
HCT116 Cells
;
Lactic Acid
4.Hesperidin Regulates Jagged1/Notch1 Pathway to Promote Macrophage Polarization and Alleviate Lung Injury in Mice with Bronchiolitis.
Xingyan ZHAO ; Zhengzhen TANG ; Chun YUE ; Zongping TAN ; Bo HUANG
Acta Academiae Medicinae Sinicae 2022;44(5):777-784
Objective To explore the effect and mechanism of hesperidin in treating the lung injury in the mouse model of respiratory syncytial virus (RSV)-induced bronchiolitis. Methods A mouse model of RSV-induced bronchiolitis was established,and 60 BALB/c mice were assigned into a control group,a model group,a low-dose hesperidin (18 mg/kg) group,a high-dose hesperidin (36 mg/kg) group,and a high-dose hesperidin (36 mg/kg)+Jagged1(1 mg/kg) group by random number table method,with 12 mice in each group. Corresponding doses of drugs were administrated for intervention,and the control group and model group were administrated with the same amount of saline.The bronchoalveolar lavage fluid (BALF) samples were collected and alveolar macrophages were isolated.ELISA was employed to detect the levels of interleukin (IL)-4,IL-6,tumor necrosis factor-α (TNF-α),and IL-10 in BALF,and flow cytometry to detect the M1/M2 polarization of macrophages.qRT-PCR and Western blotting were respectively conducted to detect the mRNA and protein levels of inducible nitric oxide synthase (iNOS),arginase 1 (Arg-1),Jagged1,and Notch1 in the lung tissue. Results Compared with the control group,the modeling of RSV-induced bronchiolitis elevated the IL-4,IL-6,and TNF-α levels,increased the proportion of M1-type macrophages and the lung inflammation and mucus secretion scores,and up-regulated the mRNA and protein levels of iNOS,Jagged1,and Notch1 in BALF (all P<0.001).Meanwhile,the modeling lowered the IL-10 level,decreased the proportion of M2-type macrophages,and down-regulated the mRNA and protein levels of Arg-1 (all P<0.001).Compared with the model group,low- and high-dose hesperidin lowered the IL-4,IL-6,TNF-α levels,decreased the proportion of M1-type macrophages and the lung inflammation and mucus secretion scores,and down-regulated the mRNA and protein levels of iNOS,Jagged1,and Notch1 in BALF (all P<0.05).Moreover,hesperidin elevated the IL-10 level,increased the proportion of M2-type macrophages,and up-regulated the mRNA and protein levels of Arg-1 (all P<0.001).Using recombinant Jagged1 protein to activate Notch1 signaling pathway can significantly attenuate the promotion of high-dose hesperidin on M2 macrophage polarization and amelioration of lung inflammation damage (all P<0.01). Conclusion Hesperidin may alleviate the lung inflammation damage in mice with RSV-induced bronchiolitis by inhibiting the Jagged1/Notch1 signaling pathway and promoting the M2-type polarization of macrophages.
Animals
;
Mice
;
Bronchiolitis/metabolism*
;
Hesperidin/metabolism*
;
Interleukin-10/pharmacology*
;
Interleukin-4/pharmacology*
;
Interleukin-6/metabolism*
;
Jagged-1 Protein/pharmacology*
;
Lung Injury/metabolism*
;
Macrophages
;
Mice, Inbred BALB C
;
RNA, Messenger/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
5.Hesperetin derivative-12 (HDND-12) regulates macrophage polarization by modulating JAK2/STAT3 signaling pathway.
Ling-Na KONG ; Xiang LIN ; Cheng HUANG ; Tao-Tao MA ; Xiao-Ming MENG ; Chao-Jie HU ; Qian-Qian WANG ; Yan-Hui LIU ; Qing-Ping SHI ; Jun LI
Chinese Journal of Natural Medicines (English Ed.) 2019;17(2):122-130
Macrophages show significant heterogeneity in function and phenotype, which could shift into different populations of cells in response to exposure to various micro-environmental signals. These changes, also termed as macrophage polarization, of which play an important role in the pathogenesis of many diseases. Numerous studies have proved that Hesperidin (HDN), a traditional Chinese medicine, extracted from fruit peels of the genus citrus, play key roles in anti-inflammation, anti-tumor, anti-oxidant and so on. However, the role of HDN in macrophage polarization has never been reported. Additional, because of its poor water solubility and bioavailability. Our laboratory had synthesized many hesperidin derivatives. Among them, hesperidin derivatives-12 (HDND-12) has better water solubility and bioavailability. So, we evaluated the role of HDND-12 in macrophage polarization in the present study. The results showed that the expression of Arginase-1 (Arg-1), interleukin-10 (IL-10), transforming growth factor β (TGF-β) were up-regulated by HDND-12, whereas the expression of inducible Nitric Oxide Synthase (iNOS) was down-regulated in LPS- and IFN-γ-treated (M1) RAW264.7 cells. Moreover, the expression of p-JAK2 and p-STAT3 were significantly decreased after stimulation with HDND-12 in M1-like macrophages. More importantly, when we taken AG490 (inhibitor of JAK2/STAT3 signaling), the protein levels of iNOS were significantly reduced in AG490 stimulation group compare with control in LPS, IFN-γ and HDND-12 stimulation cells. Taken together, these findings indicated that HDND-12 could prevent polarization toward M1-like macrophages, at least in part, through modulating JAK2/STAT3 pathway.
Animals
;
Cytokines
;
genetics
;
metabolism
;
Enzyme Inhibitors
;
pharmacology
;
Gene Expression Regulation
;
drug effects
;
Hesperidin
;
chemistry
;
pharmacology
;
Inflammation
;
genetics
;
metabolism
;
Janus Kinase 2
;
antagonists & inhibitors
;
metabolism
;
Macrophages
;
drug effects
;
immunology
;
metabolism
;
Medicine, Chinese Traditional
;
Mice
;
Molecular Structure
;
Phosphorylation
;
drug effects
;
RAW 264.7 Cells
;
STAT3 Transcription Factor
;
antagonists & inhibitors
;
metabolism
;
Signal Transduction
;
drug effects
6.Effect of hesperidin on behavior and HPA axis of rat model of chronic stress-induced depression.
Li CAI ; Rong LI ; Qing-Qing WU ; Ting-Ni WU
China Journal of Chinese Materia Medica 2013;38(2):229-233
OBJECTIVETo observe the effect of hesperidin on behavior and hypothalamic-pituitary-adrenal (HPA) axis of ratmodel of chronic stress-induced depression.
METHODChronic unpredictable mild stress (CUMS) was used to establish the rat depression model. Sixty male SD rats were divided randomly into six groups: the normal group, the model group, the hesperidin (40, 80, 160 mg x kg(-1)) group and the positive fluoxetine (10 mg x kg(-1)) group. They were orally administered with drugs for three weeks. The sucrose preference test and the forced swimming test (FST) were assayed to detect animal behavior. The levels of corticosterone (CORT) in serum, mRNA of corticotropin release factor (CRF) in hypothalamus as well as protein expression of glucocorticoid receptor (GR) in paraventricular nucleus (PVN) were determined to clarify the anti-depression effect and mechanism of hesperidin.
RESULTCompared with the model group, rats in the hesperidin (40, 80, 160 mg x kg(-1)) treatment group showed significant increase in the sucrose consumption and decrease in the immobility time in FST to varying degrees. Meanwhile, the excessively high serum CORT and adrenal index of CUMS rats were reversed by treatment with hesperidin. In addition, hesperidin inhibited CRF mRNA expression in hypothalamus and up-regulated GR protein expression in PVN among CUMS rats.
CONCLUSIONHesperidin could effectively improve the behavior of CUMS rats and show the anti-depression effect. Its mechanisms may be related to the function of regulating HPA axis.
Administration, Oral ; Animals ; Behavior, Animal ; drug effects ; Corticosterone ; blood ; Corticotropin-Releasing Hormone ; genetics ; metabolism ; Depression ; drug therapy ; etiology ; Fluoxetine ; administration & dosage ; Gene Expression Regulation ; drug effects ; Hesperidin ; administration & dosage ; pharmacology ; Hypothalamo-Hypophyseal System ; drug effects ; physiopathology ; Hypothalamus ; metabolism ; Male ; Models, Animal ; Pituitary-Adrenal System ; drug effects ; physiopathology ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Receptors, Glucocorticoid ; metabolism ; Stress, Psychological ; complications ; drug therapy ; Sucrose ; metabolism ; Swimming ; Up-Regulation
7.Identification of the metabolites of Sinisan extract in rat plasma, urine, feces and bile after intragastric administration.
Lin-ling LU ; Yan SHU ; Da-wei QIAN ; Shu-lan SU ; Jin-ao DUAN ; Ye-fei QIAN ; Cai-fu XUE
Acta Pharmaceutica Sinica 2011;46(11):1374-1379
Sinisan is a widely used traditional Chinese medicine (TCM) in treating various diseases; however, the in vivo metabolic profile of its multiple components remains unknown. In this paper, ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was applied to identify the metabolites of Sinisan extract in rat plasma, urine, feces and bile after intragastric administration. Using MS(E) and mass defect filter techniques, 41 metabolites of 10 parent compounds (naringin, naringenin, hesperidin, neohesperidin, liquiritin, liquiritigenin, glycyrrhizic acid, glycyrrhetinic acid, saikosaponin a and saikosaponin d) were detected and tentatively identified. It was shown by our results that these compounds was metabolized to the forms of hydroxylation, glucuronidation, sulfation, glucuronidation with sulfation and glucuronidation with hydroxylation in vivo.
Administration, Oral
;
Animals
;
Chromatography, High Pressure Liquid
;
Drugs, Chinese Herbal
;
metabolism
;
pharmacokinetics
;
Flavanones
;
analysis
;
metabolism
;
pharmacokinetics
;
Glucosides
;
analysis
;
metabolism
;
pharmacokinetics
;
Glycyrrhizic Acid
;
analysis
;
metabolism
;
pharmacokinetics
;
Hesperidin
;
analogs & derivatives
;
analysis
;
metabolism
;
pharmacokinetics
;
Hydroxylation
;
Male
;
Plants, Medicinal
;
chemistry
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
8.Synthesis and anti-inflammatory activities of methylhesperetin-7-alkyl ether analogues.
Bao-Shun ZHANG ; Xiao-Li YE ; Zhu CHEN ; Boe YAO ; Ping TAN ; Xue-Gang LI
Acta Pharmaceutica Sinica 2011;46(7):811-817
To investigate the relationship between the structures of methylhesperetin-7-alkyl ether analogues and their anti-inflammatory activities, nine new compounds, methyl-hesperetin (2), methylhesperetin-7-ethyl ether (3), 7-n-butyl ether (4), 7-n-hexyl ether (5), 7-n-octyl ether (6), 7-n-decyl ether (7), 7-n-dodecyl ether (8), 7-n-tetradecyl ether (9) and 7-n-hexadecyl ether (10), were synthesized with the lead compound of methylhesperidin (1). Their structures were confirmed by UV, 1H NMR, MS and HR-MS spectral data. The in vivo antiinflammatory activities of these compounds were tested on mouse paw edema induced by Freund's complete adjuvant (FCA) and mouse capillary permeability induced by acetic acid with po dose of 300 mg x kg(-1) x d(-1). The result indicated that the anti-inflammatory activities of the synthetic compounds increased firstly and then decreased with the elongating of the length of alkyl chain. After 25-day oral administration of compounds 6, 7 and 8, the inhibitory rates on mouse paw edema of adjuvant arthritis (AA) were 31.9%, 38.5%, 39.1%, respectively. They showed the concentrations of COX-2 in serum of AA mice respectively were 79.3, 75.4, 73.9 ng x L(-1) and the concentrations of PGE2 were in correspondence with 275.4, 258.9, 242.6 ng x L(-1). The inhibitory rates of compounds 6 and 7 on mouse capillary permeability induced by acetic acid were, respectively, 42.4% and 41.5% after 5-day oral administration. Compared with the lead compound of methylhesperidin, the anti-inflammatory activities of compounds 6, 7 and 8 were increased and showed an effective inhibition on the symptom of adjuvant arthritis and capillary permeability in mice.
Acetic Acid
;
Animals
;
Anti-Inflammatory Agents
;
chemical synthesis
;
chemistry
;
pharmacology
;
Arthritis, Experimental
;
blood
;
chemically induced
;
drug therapy
;
metabolism
;
Capillary Permeability
;
drug effects
;
Cyclooxygenase 2
;
blood
;
Dinoprostone
;
metabolism
;
Edema
;
chemically induced
;
drug therapy
;
Female
;
Freund's Adjuvant
;
Hesperidin
;
analogs & derivatives
;
chemical synthesis
;
chemistry
;
pharmacology
;
Male
;
Mice
;
Molecular Structure
;
Random Allocation

Result Analysis
Print
Save
E-mail