1.Effects of glyphosate, antibiotics, and an anticoccidial drug on pancreatic gene expression and blood physiology in broilers.
Georgi Yu LAPTEV ; Daria G TIURINA ; Elena A YILDIRIM ; Elena P GORFUNKEL ; Larisa A ILINA ; Valentina A FILIPPOVA ; Andrei V DUBROVIN ; Alisa S DUBROVINA ; Evgeni A BRAZHNIK ; Natalia I NOVIKOVA ; Veronika K MELIKIDI ; Kseniya A SOKOLOVA ; Ekaterina S PONOMAREVA ; Vasiliy A ZAIKIN ; Darren K GRIFFIN ; Michael N ROMANOV
Journal of Zhejiang University. Science. B 2025;26(2):185-199
Drugs and pesticide residues in broiler feed can compromise the therapeutic and production benefits of antibiotic (ANT) application and affect gene expression. In this study, we analyzed the expression of 13 key pancreatic genes and blood physiology parameters after administering one maximum residue limit of herbicide glyphosate (GLY), two ANTs, and one anticoccidial drug (AD). A total of 260 Ross 308 broilers aged 1-40 d were divided into the following four groups of 65 birds each: control group, which was fed the main diet (MD), and three experimental groups, which were fed MD supplemented with GLY, GLY+ANTs (enrofloxacin and colistin methanesulfonate), and GLY+AD (ammonium maduramicin), respectively. The results showed that the addition of GLY, GLY+ANTs, and GLY+AD caused significant changes in the expression of several genes of physiological and economic importance. In particular, genes related to inflammation and apoptosis (interleukin 6 (IL6), prostaglandin-endoperoxide synthase 2 (PTGS2), and caspase 6 (CASP6)) were downregulated by up to 99.1%, and those related to antioxidant protection (catalase (CAT), superoxide dismutase 1 (SOD1) and peroxiredoxin 6 (PRDX6)) by up to 98.6%, compared to controls. There was also a significant decline in the values of immunological characteristics in the blood serum observed in the experimental groups, and certain changes in gene expression were concordant with changes in the functioning of the pancreas and blood. The changes revealed in gene expression and blood indices in response to GLY, ANTs, and AD provide insights into the possible mechanisms of action of these agents at the molecular level. Specifically, these changes may be indicative of physiological mechanisms to overcome the negative effects of GLY, GLY+ANTs, and GLY+AD in broilers.
Animals
;
Glyphosate
;
Glycine/administration & dosage*
;
Chickens/blood*
;
Pancreas/metabolism*
;
Anti-Bacterial Agents/pharmacology*
;
Animal Feed
;
Gene Expression/drug effects*
;
Herbicides
2.A multi-enzyme cascade process for the preparation of L-phosphinothricin.
Manman WANG ; Yu YANG ; Xianbing SONG ; Xiaolian LI ; Binchun LI ; Ziqiang WANG
Chinese Journal of Biotechnology 2025;41(9):3589-3603
L-phosphinothricin (L-PPT) is an efficient broad-spectrum herbicide. To realize the multi-enzyme catalytic preparation of L-PPT, we constructed an engineered strain Escherichia coli YM-1 for efficient expression of D-amino acid transaminase, which could catalyze the generation of the intermediate 2-oxo-4-[(hydroxymethylphosphonyl)] butyric acid (PPO) from D-phosphinothricin (D-PPT). In addition, E. coli pLS was constructed to co-express glutamate dehydrogenase and glucose dehydrogenase, which not only catalyzed the generation of L-PPT from PPO but also regenerated the coenzyme nicotinamide adenine dinucleotide phosphate (NADPH). A fed-batch fermentation process was then established for E. coli YM-1 and pLS, and the apparent activities of D-amino acid transaminase and glutamate dehydrogenase were increased by 22.68% and 100.82%, respectively, compared with those in shake flasks. The process parameters were optimized for the catalytic preparation of L-PPT by whole-cell cascade of E. coli YM-1 and pLS with D, L-PPT as the substrate. After reaction for 8 h, 91.36% conversion of D-PPT was achieved, and the enantiomeric excess of L-PPT reached 90.22%. The findings underpin the industrial production of L-PPT.
Escherichia coli/enzymology*
;
Aminobutyrates/metabolism*
;
Glutamate Dehydrogenase/biosynthesis*
;
Glucose 1-Dehydrogenase/biosynthesis*
;
Herbicides/metabolism*
;
Multienzyme Complexes/metabolism*
;
Transaminases/metabolism*
;
Phosphinic Acids/metabolism*
3.Effects of ZJ0273 on barley and growth recovery of herbicide-stressed seedlings through application of branched-chain amino acids.
Ling XU ; Jian-Yao SHOU ; Rafaqat Ali GILL ; Xiang GUO ; Ullah NAJEEB ; Wei-Jun ZHOU
Journal of Zhejiang University. Science. B 2019;20(1):71-83
In this study, we evaluated the effect of the herbicide propyl 4-(2-(4,6-dimethoxypyrimidin-2-yloxy)benzylamino) benzoate (ZJ0273) on barley growth and explored the potential to trigger growth recovery through the application of branched-chain amino acids (BCAAs). Barley plants were foliar-sprayed with various concentrations of ZJ0273 (100, 500, or 1000 mg/L) at the four-leaf stage. Increasing either the herbicide concentration or measurement time after herbicide treatment significantly impaired plant morphological parameters such as plant height and biomass, and affected physiological indexes, i.e. maximal photochemical efficiency (Fv/Fm), quantum yield of photosystem II (ФPSII), net photosynthetic rate (Pn), and chlorophyll meter value (soil and plant analyzer development (SPAD)). Cellular injury of herbicide-treated plants was also evidenced by increased levels of reactive oxygen species (ROS) and antioxidative enzyme activity. Elevated levels of herbicide significantly reduced the activity of acetolactate synthase (ALS)-a key enzyme in the biosynthesis of BCAAs. In a separate experiment, growth recovery in herbicide-stressed barley plants was studied using various concentrations of BCAAs (10, 50, 100, and 200 mg/L). Increasing BCAA concentration in growth media significantly increased the biomass of herbicide-stressed barley seedlings, but had no significant effect on non-stressed plants. Further, BCAAs (100 mg/L) significantly down-regulated ROS and consequently antioxidant enzyme levels in herbicide-stressed plants. Our results showed that exogenous application of BCAAs could reverse the inhibitory effects of ZJ0273 by restoring protein biosynthesis in barley seedlings.
Amino Acids, Branched-Chain/administration & dosage*
;
Antioxidants/metabolism*
;
Benzoates/pharmacology*
;
Biomass
;
Chlorophyll/metabolism*
;
Herbicides/pharmacology*
;
Hordeum/metabolism*
;
Photosynthesis/drug effects*
;
Plant Leaves/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Seedlings/metabolism*
4.Effects of shRNA interference the expression of connective tissue growth factor mediated by lentivirus in lung fibrosis of paraquat poisoning rats.
Yiwei SU ; Wei ZHU ; Baxiong WEI ; Feng LI ; Yanhua LI ; Yuan GAO ; Yimin LIU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2015;33(5):359-362
Animals
;
Connective Tissue Growth Factor
;
metabolism
;
Fibrosis
;
Herbicides
;
poisoning
;
Lentivirus
;
Lung
;
pathology
;
Paraquat
;
poisoning
;
Poisoning
;
pathology
;
Pulmonary Fibrosis
;
pathology
;
RNA Interference
;
RNA, Small Interfering
;
Rats
5.Toxic effects of atrazine on reproductive system of male rats.
Yang SONG ; Zhen Chao JIA ; Jin Yao CHEN ; Jun Xiang HU ; Li Shi ZHANG
Biomedical and Environmental Sciences 2014;27(4):281-288
OBJECTIVEThis study was designed to evaluate the toxic effects of Atrazine (ATZ) on the reproductive system of male rats.
METHODSMale Sprague-Dawley rats were exposed to ATZ by gavage at dosages of 0, 38.5, 77, and 154 mg/kg bw/day for 30 d. The toxic effects of ATZ to rats were assessed through histopathologcal observation, spermatozoa quality evaluation, testicular marker enzyme indicators, antioxidant capacity and reproductive hormone levels.
RESULTSSignificant adverse effects on reproductive system were observed in rats exposed to ATZ at different dosages compared with 0 mg/kg group, including an irregular and disordered arrangement of the seminiferous epithelium in 154 mg/kg group; a decreased spermatozoa number and an increased spermatozoa abnormality rate in 77 and 154 mg/kg groups; decreased levels of acid phosphatase (ACP), alkaline phosphatase (AKP), lactic dehydrogenase (LDH), and succinate dehydrogenase (SDH) with the increasing of ATZ concentration; a decreased level of total antioxidant capacity (TAC) in a dose-dependent manner, and a decreased reduced glutathione (GSH) level and an increased malondialdehyde (MDA) content in 154 mg/kg group; and decreased serum levels of testosterone (T) and inhibin-B (INH-B) and an increased serum level of follicle stimulating hormone (FSH) in 77 and 154 mg/kg groups, and an increased serum level of luteinizing hormone (LH) in 154 mg/kg group.
CONCLUSIONThese results suggested that relatively high doses of ATZ could exert reproductive toxicity of male rats.
Animals ; Antioxidants ; metabolism ; Atrazine ; toxicity ; Body Weight ; drug effects ; Herbicides ; toxicity ; Hormones ; blood ; Male ; Organ Size ; drug effects ; Rats ; Rats, Sprague-Dawley ; Sperm Count ; Spermatozoa ; abnormalities ; drug effects ; Testis ; drug effects ; enzymology ; pathology ; Toxicity Tests, Chronic
6.Effects of glyphosate on apoptosis and expressions of androgen-binding protein and vimentin mRNA in mouse Sertoli cells.
Wenhong ZHAO ; Hui YU ; Jianguo ZHANG ; Li SHU
Journal of Southern Medical University 2013;33(11):1709-1713
OBJECTIVETo investigate the effect of different doses of glyphosate on apoptosis and expressions of androgen-binding protein (ABP) and vimentin mRNA in mouse Sertoli cells.
METHODSPrimarily cultured mouse Sertoli cells incubated with different doses of glyphosate (60, 90, 120, 150 and 180 mg/L) for 24 h. The growth and morphological alterations in the cells were observed under inverted microscope, and the cell proliferation rate was evaluated withMTT assay. Hoechst 33342 staining was used to detect cell apoptosis after the treatment, and RT-PCR was performed to examine the changes in the expression of ABP and vimentin mRNAs.
RESULTSSertoli cells exposed to glyphosate showed a reduced cell volume, cell dissociation with occasional cell disruption. The proliferation of the exposed was suppressed with an increased rate of cell apoptosis and lowered expressions of ABP and vimentin mRNAs (P<0.05).
CONCLUSIONGLY can cause cellular damages, inhibit cell proliferation, induce cell apoptosis, and decrease expression of ABP and vimentin mRNAs in mouse Sertoli cells in vitro.
Androgen-Binding Protein ; genetics ; metabolism ; Animals ; Apoptosis ; drug effects ; Cell Proliferation ; drug effects ; Cells, Cultured ; Dose-Response Relationship, Drug ; Glycine ; administration & dosage ; analogs & derivatives ; toxicity ; Herbicides ; administration & dosage ; toxicity ; Male ; Mice ; RNA, Messenger ; metabolism ; Sertoli Cells ; cytology ; drug effects ; metabolism ; Vimentin ; genetics ; metabolism
7.Effects of ABA and its biosynthetic inhibitor fluridone on accumulation of penolic acids and activity of PAL and TAT in hairy root of Salvia miltiorrhiza.
Beimi CUI ; Zongsuo LIANG ; Yan LIU ; Fenghua LIU ; Jianguo ZHU
China Journal of Chinese Materia Medica 2012;37(6):754-759
OBJECTIVETo study the function of ABA and fluridone on the contents of penolic acids and two key synthetases (PAL and TAT).
METHODConducted 4 different concentrations in the hairy root of Salvia miltiorrhiza after culturing 18 days and treated with fluridone. One day later, harvested the hairy root and measured the activity of PAL and TAT; Treatment for 6 days, gathered and determined the contents of phenolic acids.
RESULTIn certain concentration of ABA, lower ABA could induced the production of growth and higher ABA inhibitor the growth in hairy roots of S. miltiorrhiza; ABA induced the accumulation of caffeic acid considerably, and the effect on the contents of coffee acid show positive correlation; As for the RA and LAB, the low dosage of ABA simulated the production and higher ABA inhibited the production of them; the ABA biosynthetic inhibitor fluridone can decreases ABA's the effect; The different of ABA activated the activity of PAL and TAT, but the impact were discriminating, when treatment with ABA and fluridone, the inducing were declined.
CONCLUSIONABA induced the accumulation of.
Abscisic Acid ; antagonists & inhibitors ; metabolism ; pharmacology ; Antioxidants ; analysis ; metabolism ; Biomass ; Caffeic Acids ; analysis ; metabolism ; Herbicides ; pharmacology ; Hydroxybenzoates ; analysis ; metabolism ; Medicine, Chinese Traditional ; Phenylalanine Ammonia-Lyase ; drug effects ; metabolism ; Plant Roots ; drug effects ; enzymology ; growth & development ; Pyridones ; pharmacology ; Salvia miltiorrhiza ; drug effects ; enzymology ; growth & development ; Time Factors ; Tyrosine Transaminase ; drug effects ; metabolism
8.High throughput screening atrazine chlorohydrolase mutants with enhanced activity through Haematococcus pluvialis expression system.
Huizhuan WANG ; Xiwen CHEN ; Xiaohua HAO ; Defu CHEN
Chinese Journal of Biotechnology 2011;27(4):620-628
Developing a high-throughput screening method is of great importance for directed evolution of atrazine chlorohydrolase. A mutagenesis library of atzA from Pseudomonas sp. ADP and Arthrobacter sp. AD1 was constructed using error-prone PCR and DNA shuffling. Candidate mutants were screened through Haematococcus pluvialis expression system, using atrazine as selection pressure. Sequence analysis showed that mutations in the obtained 12 mutants with enhanced activity were all point-substitutions and scattered throughout the gene. Enzymatic activity analysis showed that the mutants all had higher activities than that of the wild type. The activities were 1.8-3.6 fold of the wild-type enzyme when cultured in BBM medium with 1 mg/L atrazine, whereas 1.8-2.6 fold with 2 mg/L atrazine. These results indicated that Haematococcus pluvialis expression system is an ideal high throughput screening system for directed evolution of atrazine chlorohydrolase.
Amidohydrolases
;
genetics
;
Atrazine
;
metabolism
;
Bacterial Proteins
;
genetics
;
Biodegradation, Environmental
;
Chlorophyta
;
genetics
;
metabolism
;
Herbicides
;
metabolism
;
High-Throughput Screening Assays
;
Hydrolases
;
biosynthesis
;
genetics
;
Mutagenesis, Insertional
;
Pseudomonas
;
enzymology
;
genetics
9.Protective effect of 4,4'-diaminodiphenylsulfone against paraquat-induced mouse lung injury.
Sung Chun CHO ; Ji Heon RHIM ; Hae Ri CHOI ; Young Hoon SON ; Seok Jin LEE ; Kye Yong SONG ; Sang Chul PARK
Experimental & Molecular Medicine 2011;43(9):525-537
Although 4,4'-diaminodiphenylsulfone (DDS, dapsone) has been used to treat several dermatologic conditions, including Hansen disease, for the past several decades, its mode of action has remained a topic of debate. We recently reported that DDS treatment significantly extends the lifespan of the nematode C. elegans by decreasing the generation of reactive oxygen species. Additionally, in in vitro experiments using non-phagocytic human fibroblasts, we found that DDS effectively counteracted the toxicity of paraquat (PQ). In the present study, we extended our work to test the protective effect of DDS against PQ in vivo using a mouse lung injury model. Oral administration of DDS to mice significantly attenuated the lung tissue damage caused by subsequent administration of PQ. Moreover, DDS reduced the local expression of mRNA transcripts encoding inflammation-related molecules, including endothelin-1 (ET-1), macrophage inflammatory protein-1alpha (MIP-1alpha), and transforming growth factor-beta (TGF-beta). In addition, DDS decreased the PQ-induced expression of NADPH oxidase mRNA and activation of protein kinase Cmicro (PKCmicro). DDS treatment also decreased the PQ-induced generation of superoxide anions in mouse lung fibroblasts. Taken together, these data suggest the novel efficacy of DDS as an effective protective agent against oxidative stress-induced tissue damages.
Animals
;
Cells, Cultured
;
Chemokine CCL3/drug effects/metabolism
;
Dapsone/*administration & dosage
;
Endothelin-1/drug effects/metabolism
;
Fibroblasts/drug effects
;
Herbicides/*antagonists & inhibitors/toxicity
;
Lung Injury/chemically induced/*prevention & control
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Oxidative Stress
;
Paraquat/*antagonists & inhibitors/toxicity
;
Protective Agents/*administration & dosage
;
Protein Kinase C/genetics/metabolism
;
Superoxides/analysis
;
Transforming Growth Factor beta/drug effects/metabolism
10.Down-regulation of survivin suppresses uro-plasminogen activator through transcription factor JunB.
Kyung Hee LEE ; Eun Young CHOI ; Sung Ae KOH ; Min Kyoung KIM ; Kyeong Ok KIM ; Si Hyung LEE ; Byung Ik JANG ; Se Won KIM ; Sang Woon KIM ; Sun Kyo SONG ; Joon Hyuk CHOI ; Jae Ryong KIM
Experimental & Molecular Medicine 2011;43(9):501-509
Survivin, a member of the inhibitors of apoptosis protein family, is expressed during development and in various human cancers. However, the clinical relevance of survivin in cancer is still a matter of debate. Genes induced by hepatocyte growth factor (HGF) were screened using cDNA microarray technology in the stomach cancer cell lines, NUGC3 and MKN28. The levels of JunB, survivin, and uro-plasminogen activator (uPA) were up-regulated in cells treated with HGF in a dose-dependent manner. HGF-induced up regulation of JunB, survivin, and uPA was inhibited by pre-treatment with a MEK inhibitor (PD 98059). HGF-induced up-regulation of uPA was repressed by survivin knockdown. HGF enhanced the binding activity of JunB to the survivin promoter in control cells, but not in the JunB-shRNA cells. Transfection with survivin-shRNA resulted in a decrement of cell proliferation, as determined with MTT assays. In an in vitro invasion assay, significantly fewer cells transfected with survivin shRNA than control cells were able to invade across a Matrigel membrane barrier. In conclusion, survivin appeared to play an important role in the up-regulation of uPA induced by HGF via JunB and might contribute to HGF-mediated tumor invasion and metastasis, which may serve as a promising target for gastric cancer therapy.
Apoptosis
;
Cell Hypoxia
;
Cell Line, Tumor
;
*Cytoprotection
;
Glutathione Peroxidase/metabolism
;
Herbicides/*toxicity
;
Humans
;
L-Lactate Dehydrogenase/metabolism
;
Lung/*cytology/*drug effects/metabolism
;
Malondialdehyde/metabolism
;
Oxidative Stress
;
Paraquat/*toxicity
;
Reactive Oxygen Species/*metabolism
;
Superoxide Dismutase/metabolism

Result Analysis
Print
Save
E-mail