1.MASLD development: From molecular pathogenesis toward therapeutic strategies.
Zhu YANG ; Jiahui ZHAO ; Kexin XIE ; Chengwei TANG ; Can GAN ; Jinhang GAO
Chinese Medical Journal 2025;138(15):1807-1824
Metabolic dysfunction-associated steatotic liver disease (MASLD) comprises a spectrum of liver injuries, including steatosis to steatohepatitis (MASH), liver fibrosis, cirrhosis, and relevant complications. The liver mainly comprises hepatocytes, liver sinusoidal endothelial cells (LSECs), Kupffer cells (KCs), immune cells (T cells, B cells), and hepatic stellate cells (HSCs). Crosstalk among these different liver cells, endogenous aberrant glycolipid metabolism, and altered gut dysbiosis are involved in the pathophysiology of MASLD. This review systematically examines advances in understanding the molecular pathogenesis of MASLD, with a focus on emerging therapeutic targets and translational clinical trials. We first delineate the crucial regulatory mechanisms involving diverse liver cells and the gut-liver axis in MASLD development. These cell-specific pathogenic insights offer valuable perspectives for advancing precision medicine approaches in MASLD treatment. Furthermore, we evaluate potential therapeutic targets and summarize clinical trials currently underway. By comprehensively updating the MASLD pathophysiology and identifying promising strategies, this review aims to facilitate the development of novel pharmacotherapies for this increasingly prevalent condition.
Humans
;
Fatty Liver/therapy*
;
Animals
;
Liver/pathology*
;
Kupffer Cells/metabolism*
;
Hepatocytes/metabolism*
;
Hepatic Stellate Cells/metabolism*
2.Crosstalk and the progression of hepatocellular carcinoma.
Lei-Rong GU ; Hui ZHANG ; Juan CHEN ; Sheng-Tao CHENG
Acta Physiologica Sinica 2025;77(2):267-276
Malignant proliferating liver cancer cells possess the ability to detect and respond to various body signals, thereby facilitating tumor growth, invasion, and metastasis. One crucial mechanism through which hepatocellular carcinoma (HCC) cells interpret these signals is crosstalk. Within liver cancer tissues, cancer cells engage in communication with hepatic stellate cells (HSCs), tumor-associated macrophages (TAMs), and immune cells. This interaction plays a pivotal role in regulating the proliferation, invasion, and metastasis of HCC cells. Crosstalk occurs in multiple ways, each characterized by distinct functions. Its molecular mechanisms primarily involve regulating immune cell functions through the expression of specific receptors, such as CD24 and CD47, modulating cell functions by secreting cytokines like transforming growth factor-β (TGF-β) and platelet-derived growth factor (PDGF), and mediating cell growth and proliferation by activating pathways such as Wnt/β-catenin and Hedgehog. A comprehensive understanding of the mechanisms and interactions within crosstalk is essential for unraveling the pathogenesis of HCC. It also opens up new avenues for the development of innovative therapeutic strategies. This article reviews the relationship between crosstalk and the progression of HCC, offering insights and inspiration for future research.
Humans
;
Carcinoma, Hepatocellular/metabolism*
;
Liver Neoplasms/metabolism*
;
Hepatic Stellate Cells/physiology*
;
Disease Progression
;
Signal Transduction/physiology*
;
Transforming Growth Factor beta/metabolism*
;
Cell Proliferation
;
Hedgehog Proteins/metabolism*
;
Tumor-Associated Macrophages
;
Platelet-Derived Growth Factor/metabolism*
;
Cell Communication/physiology*
3.Mechanism of traditional Chinese medicine treatment of hepatic fibrosis by restoring circadian rhythms.
Meng-Ru ZHANG ; Ruo-Nan JIANG ; Shu-Hua XIONG ; Hong-Yan WU ; De-Song KONG ; Li CHEN
China Journal of Chinese Materia Medica 2025;50(16):4407-4414
Hepatic fibrosis is a key pathological process in the development of chronic liver disease to cirrhosis, and its core mechanism involves the activation of hepatic stellate cells(HSC) and abnormal deposition of extracellular matrix(ECM). Although existing treatments, such as antiviral drugs, can delay disease progression, they have the problem of single therapeutic targets and cannot reverse fibrosis. Accordingly, multidimensional intervention strategies are urgently needed. Recent studies have shown that circadian rhythm disorders aggravate hepatic fibrosis by regulating metabolism, immunity, and inflammation. Traditional Chinese medicine(TCM) plays a unique role in restoring the circadian clock via multi-target and holistic regulation. This paper establishes a three-dimensional network by systematically integrating biological clock, metabolism, and immunity for the first time to elucidate the scientific connotation of the theory of time-concerned treatment of TCM, and proposes a new strategy for the development of time-targeted compound prescriptions, providing innovative ideas for the treatment of hepatic fibrosis.
Humans
;
Liver Cirrhosis/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Circadian Rhythm/drug effects*
;
Animals
;
Medicine, Chinese Traditional
;
Hepatic Stellate Cells/drug effects*
4.Research on the mechanism of gentiopicroside preventing macrophage-mediated liver fibrosis by regulating the MIF-SPP1 signaling pathway in hepatic stellate cells.
Jixu WANG ; Yingbin ZHU ; Maoli CHEN ; Yongfeng HAN
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):593-602
Objective To explore the mechanism by which gentiopicroside (GPS) prevents macrophage-mediated hepatic fibrosis by regulating the macrophage migration inhibitory factor (MIF)-secreted phosphoprotein 1 (SPP1) signaling pathway in hepatic stellate cells. Methods LX-2 cells were divided into control group, transforming growth factor β(TGF-β) group, and TGF-β combined with GPS (25, 50, 100, 150 μmol/mL) groups. Cell proliferation was detected by EDU assay, cell invasion was assessed by TranswellTM assay, and the protein expressions of α-smooth muscle actin (α-SMA) and type I collagen (COL1A1) were measured by Western blot. M1-type macrophage-conditioned medium (M1-CM) was used to treat LX-2 cells in the TGF-β group and TGF-β combined with GPS group. The concentrations of inducible nitric oxide synthase (iNOS) and arginase 1 (Arg1) in the cell supernatant, as well as cell proliferation, invasion ability, and the expressions of α-SMA and COL1A1 were detected. Bioinformatics analysis was performed to identify the target intersections of GPS, hepatic fibrosis, and macrophage-related genes. Drug affinity responsive target stability (DARTS) experiments and Western blot were used to verify the regulatory effect of GPS on MIF. Furthermore, LX-2 cells were divided into control group, TGF-β group, TGF-β combined with M2-CM group, TGF-β and oe-NC combined with M2-CM group, and TGF-β and oe-MIF combined with M2-CM group to analyze the concentrations of iNOS and Arg1 in the cell supernatant, as well as changes in cell proliferation, invasion, and the expressions of α-SMA and COL1A1. LX-2 cells were also divided into control group, TGF-β group, TGF-β combined with oe-NC group, TGF-β combined with oe-MIF group, and TGF-β and oe-MIF combined with GPS group to determine the protein expressions of MIF and SPP1 by Western blot. A rat model of hepatic fibrosis was constructed to explore the potential therapeutic effects of GPS on hepatic fibrosis in vivo. Results Compared with the control group, the proliferation and invasion abilities of LX-2 cells in the TGF-β group were increased, and the protein expressions of α-SMA and COL1A1 were enhanced. GPS intervention inhibited the proliferation and invasion of LX-2 cells under TGF-β conditions and reduced the expressions of α-SMA and COL1A1. Compared with the control group, the concentration of iNOS in the cell supernatant of the TGF-β group was upregulated, while the concentration of Arg1 was decreased. M1-CM treatment further increased the concentration of iNOS, decreased the concentration of Arg1, and promoted cell proliferation and invasion, as well as upregulated the expressions of α-SMA and COL1A1 on the basis of TGF-β intervention. However, GPS could reverse the effects of M1-CM intervention. Bioinformatics analysis revealed that MIF was one of the target intersections of GPS, hepatic fibrosis, and macrophage-related genes, and GPS could target and inhibit its expression. Compared with the TGF-β group, after M2-CM intervention, the concentration of iNOS in the cell supernatant decreased, the concentration of Arg1 increased, the proliferation and invasion abilities of LX-2 cells were reduced, and the expressions of α-SMA and COL1A1 were weakened. However, overexpression of MIF reversed the effects of M2-CM intervention. Western blot results showed that compared with the control group, the protein expressions of MIF and SPP1 were enhanced in the TGF-β group. Overexpression of MIF further enhanced the expressions of MIF and SPP1, while GPS intervention inhibited the expressions of MIF and SPP1. In the animal experiment, GPS intervention treatment alleviated liver injury in rats with hepatic fibrosis and inhibited the expressions of MIF and SPP1, as well as α-SMA and COL1A1 in liver tissue. Conclusion GPS may prevent macrophage-mediated hepatic fibrosis by inhibiting the MIF-SPP1 signaling pathway in hepatic stellate cells.
Hepatic Stellate Cells/metabolism*
;
Signal Transduction/drug effects*
;
Macrophage Migration-Inhibitory Factors/genetics*
;
Liver Cirrhosis/prevention & control*
;
Macrophages/drug effects*
;
Iridoid Glucosides/pharmacology*
;
Humans
;
Cell Proliferation/drug effects*
;
Animals
;
Cell Line
;
Collagen Type I/metabolism*
;
Collagen Type I, alpha 1 Chain
;
Intramolecular Oxidoreductases/genetics*
;
Rats
;
Transforming Growth Factor beta/pharmacology*
;
Actins/metabolism*
5.NUMB endocytic adaptor protein (NUMB) mediates the anti-hepatic fibrosis effect of artesunate (ART) by inducing senescence in hepatic stellate cells (HSCs).
Yangling QIU ; Yujia LI ; Mengran LI ; Yingqian WANG ; Min SHEN ; Jiangjuan SHAO ; Feng ZHANG ; Xuefen XU ; Feixia WANG ; Zili ZHANG ; Shizhong ZHENG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(3):322-333
Developing and identifying effective medications and targets for treating hepatic fibrosis is an urgent priority. Our previous research demonstrated the efficacy of artesunate (ART) in alleviating liver fibrosis by eliminating activated hepatic stellate cells (HSCs). However, the underlying mechanism remains unclear despite these findings. Notably, endocytic adaptor protein (NUMB) has significant implications for treating hepatic diseases, but current research primarily focuses on liver regeneration and hepatocellular carcinoma. The precise function of NUMB in liver fibrosis, particularly its ability to regulate HSCs, requires further investigation. This study aims to elucidate the role of NUMB in the anti-hepatic fibrosis action of ART in HSCs. We observed that the expression level of NUMB significantly decreased in activated HSCs compared to quiescent HSCs, exhibiting a negative correlation with the progression of liver fibrosis. Additionally, ART induced senescence in activated HSCs through the NUMB/P53 tumor suppressor (P53) axis. We identified NUMB as a crucial regulator of senescence in activated HSCs and as a mediator of ART in determining cell fate. This research examines the specific target of ART in eliminating activated HSCs, providing both theoretical and experimental evidence for the treatment of liver fibrosis.
Hepatic Stellate Cells/cytology*
;
Liver Cirrhosis/genetics*
;
Artesunate/pharmacology*
;
Cellular Senescence/drug effects*
;
Membrane Proteins/genetics*
;
Animals
;
Humans
;
Nerve Tissue Proteins/genetics*
;
Tumor Suppressor Protein p53/genetics*
;
Male
;
Mice
6.Exploring the Efficacy of BMSC Transplantation via Various Pathways for Treating Cholestatic Liver Fibrosis in Mice.
Jun Jie REN ; Zi Xu LI ; Xin Rui SHI ; Ting Ting LYU ; Xiao Nan LI ; Min GE ; Qi Zhi SHUAI ; Ting Juan HUANG
Biomedical and Environmental Sciences 2025;38(4):447-458
OBJECTIVE:
To compare the therapeutic efficacy of portal and tail vein transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) against cholestatic liver fibrosis in mice.
METHODS:
BMSCs were isolated and co-cultured with starvation-activated hepatic stellate cells (HSCs). HSC activation markers were identified using immunofluorescence and qRT-PCR. BMSCs were injected into the liver tissues of bile duct ligation (BDL) mice via the tail and portal veins. Histomorphology, liver function, inflammatory cytokines, and the expression of key proteins were all determined in the liver tissues.
RESULTS:
BMSCs inhibited HSC activation by reducing α-SMA and collagen I expression. Compared to tail vein injection, DIL-labeled BMSCs injected through the portal vein maintained a high homing rate in the liver. Moreover, BMSCs transplanted through the portal vein resulted in greater improvement in liver color, hardness, and gallbladder size than did those transplanted through the tail vein. Furthermore, BMSCs injected by portal vein, but not tail vein, markedly ameliorated liver function, reduced the secretion of inflammatory cytokines, including TNF-α, IL-6, and IL-1β, and decreased α-SMA + hepatic stellate cell (HSC) activation and collagen fiber formation.
CONCLUSION
The therapeutic effect of BMSCs on cholestatic liver fibrosis in mice via portal vein transplantation was superior to that of tail vein transplantation. This comparative study provides reference information for further BMSC studies focused on clinical cholestatic liver diseases.
Animals
;
Mice
;
Mesenchymal Stem Cell Transplantation
;
Liver Cirrhosis/etiology*
;
Male
;
Cholestasis/therapy*
;
Mice, Inbred C57BL
;
Hepatic Stellate Cells
;
Mesenchymal Stem Cells
7.Si-Wu-Tang attenuates liver fibrosis via regulating lncRNA H19-dependent pathways involving cytoskeleton remodeling and ECM deposition.
Jiaorong QU ; Xiaoyong XUE ; Zhixing WANG ; Zhi MA ; Kexin JIA ; Fanghong LI ; Yinhao ZHANG ; Ruiyu WU ; Fei ZHOU ; Piwen ZHAO ; Xiaojiaoyang LI
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):31-46
Liver fibrosis is a dynamic wound-healing response characterized by the agglutination of the extracellular matrix (ECM). Si-Wu-Tang (SWT), a traditional Chinese medicine (TCM) formula, is known for treating gynecological diseases and liver fibrosis. Our previous studies demonstrated that long non-coding RNA H19 (H19) was markedly upregulated in fibrotic livers while its deficiency markedly reversed fibrogenesis. However, the mechanisms by which SWT influences H19 remain unclear. Thus, we established a bile duct ligation (BDL)-induced liver fibrosis model to evaluate the hepatoprotective effects of SWT on various cells in the liver. Our results showed that SWT markedly improved ECM deposition and bile duct reactions in the liver. Notably, SWT relieved liver fibrosis by regulating the transcription of genes involved in the cytoskeleton remodeling, primarily in hepatic stellate cells (HSCs), and influencing cytoskeleton-related angiogenesis and hepatocellular injury. This modulation collectively led to reduced ECM deposition. Through extensive bioinformatics analyses, we determined that H19 acted as a miRNA sponge and mainly inhibited miR-200, miR-211, and let7b, thereby regulating the above cellular regulatory pathways. Meanwhile, SWT reversed H19-related miRNAs and signaling pathways, diminishing ECM deposition and liver fibrosis. However, these protective effects of SWT were diminished with the overexpression of H19 in vivo. In conclusion, our study elucidates the underlying mechanisms of SWT from the perspective of H19-related signal networks and proposes a potential SWT-based therapeutic strategy for the treatment of liver fibrosis.
Humans
;
RNA, Long Noncoding/genetics*
;
Liver Cirrhosis/genetics*
;
Liver/metabolism*
;
Hepatic Stellate Cells/pathology*
;
MicroRNAs/metabolism*
;
Extracellular Matrix/metabolism*
;
Drugs, Chinese Herbal
8.Dahuang Zhechong Pill Alleviates Liver Fibrosis Progression by Regulating p38 MAPK/NF-κ B/TGF-β1 Pathway.
Xiao-Yan HE ; Xiao-Jiao XIONG ; Mei-Jun LIU ; Jing-Tao LIANG ; Fu-You LIU ; Jing-Yi XIAO ; Li-Juan WU
Chinese journal of integrative medicine 2024;30(12):1113-1120
OBJECTIVE:
To explore the effect and mechanism of Dahuang Zhechong Pill (DHZCP) on liver fibrosis.
METHODS:
Liver fibrosis cell model was induced by transforming growth factor-β (TGF-β) in hepatic stellate cells (HSC-T6). DHZCP medicated serum (DMS) was prepared in rats. HSC-T6 cells were divided into the control (15% normal blank serum culture), TGF-β (15% normal blank serum + 5 ng/mL TGF-β), DHZCP (15% DMS + 5 ng/mL TGF-β), DHZCP+PDTC [15% DMS + 4 mmol/L ammonium pyrrolidine dithiocarbamate (PDTC)+ 5 ng/mL TGF-β], and PDTC groups (4 mmol/L PDTC + 5 ng/mL TGF-β). Cell activity was detected by cell counting kit 8 and levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the cell supernatant were determined by enzyme-linked immunosorbnent assay. Western blot was used to measure the expressions of p38 mitogen-activated protein kinase/nuclear factor kappa B/transforming growth factor-β1 (p38 MAPK/NF-κ B/TGF-β1) pathway related proteins, and the localization and expressions of these proteins were observed by immunofluorescence staining.
RESULTS:
DHZCP improves the viability of cells damaged by TGF-β and reduces inflammatory cytokines and ALT and AST levels in the supernatant of HSC-T6 cells induced with TGF-β (P<0.05 or P<0.01). Compared with the TGF-β group, NF-κ B p65 levels in the DHZCP group were decreased (P<0.05). p38 MAPK and NF-κ B p65 levels in the DHZCP+PDTC were also reduced (P<0.01). Compared with the TGF-β group, the protein expression of Smad2 showed a downward trend in the DHZCP, DHZCP+PDTC, and PDTC groups (all P<0.01), and the decreasing trend of Samd3 was statistically significant only in DHZCP+PDTC group (P<0.01), whereas Smad7 was increased (P<0.05 or P<0.01).
CONCLUSION
DHZCP can inhibit the process of HSC-T6 cell fibrosis by down-regulating the expression of p38 MAPK/NF-κ B/TGF-β1 pathway.
Animals
;
Liver Cirrhosis/pathology*
;
Drugs, Chinese Herbal/therapeutic use*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
NF-kappa B/metabolism*
;
Transforming Growth Factor beta1/metabolism*
;
Male
;
Signal Transduction/drug effects*
;
Rats
;
Disease Progression
;
Cell Line
;
Hepatic Stellate Cells/pathology*
;
Rats, Sprague-Dawley
9.Synchronization isolation method for multiple types of cells from mouse liver.
Jian GAN ; Cui Feng JI ; Xiao Rong MAO ; Jiang Tao WANG ; Chun Yan LYU ; Yi Fan SHI ; Yao LIAO ; Ya Li HE ; Lian SHU ; Long LI ; Jun Feng LI
Chinese Journal of Hepatology 2023;31(5):532-537
Objective: To explore a simple and feasible method for the isolation and purification of hepatocytes, hepatic stellate cells (HSC), and lymphocytes from mice. Methods: The cell suspension was obtained from male C57bl/6 mice by hepatic perfusion through the portal vein digestion method and then isolated and purified by discontinuous Percoll gradient centrifugation. Trypan blue exclusion was used to determine cell viability. Glycogen staining, cytokeratin 18, and transmission electron microscopy were used to identify hepatic cells. Immunofluorescence was used to detect α-smooth muscle actin combined with desmin in HSCs. Flow cytometry was used to analyze lymphocyte subsets in the liver. Results: After isolation and purification, about 2.7×10(7) hepatocytes, 5.7×10(5) HSCS, and 4.6×106 hepatic mononuclear cells were obtained from the liver of mice with a body weight of about 22g. The cell survival rate in each group was > 95%. Hepatocytes were apparent in glycogen deposited purple-red granules and cytokeratin 18. Electron microscopy showed that there were abundant organelles in hepatocytes and tight junctions between cells. HSC had expressed α-smooth muscle actin and desmin. Flow cytometry showed hepatic mononuclear cells, including lymphocyte subsets such as CD4, CD8, NKs, and NKTs. Conclusion: The hepatic perfusion through the portal vein digestion method can isolate multiple primary cells from the liver of mice at once and has the features of simplicity and efficiency.
Male
;
Mice
;
Animals
;
Keratin-18
;
Actins
;
Desmin
;
Liver
;
Hepatocytes
;
Hepatic Stellate Cells
10.Overview and prospects of an in vitro cell model for studying liver fibrosis.
Chinese Journal of Hepatology 2023;31(6):668-672
Liver fibrosis incidence and adverse outcomes are high; however, there are no known chemical drugs or biological agents that are specific and effective for treatment. The paucity of a robust and realistic in vitro model for liver fibrosis is one of the major causes hindering anti-liver fibrosis drug development. This article summarizes the latest progress in the development of in vitro cell models for liver fibrosis, with a focus based on the analysis of induction and activation of hepatic stellate cells, cell co-culture, and 3D model co-construction, as well as concurrent potential methods based on hepatic sinusoidal endothelial cell establishment.
Humans
;
Liver Cirrhosis/pathology*
;
Hepatic Stellate Cells
;
Cell Culture Techniques
;
Endothelial Cells

Result Analysis
Print
Save
E-mail