1.Bacteroi des fragilis-derived succinic acid promotes the degradation of uric acid by inhibiting hepatic AMPD2: Insight into how plant-based berberine ameliorates hyperuricemia.
Libin PAN ; Ru FENG ; Jiachun HU ; Hang YU ; Qian TONG ; Xinyu YANG ; Jianye SONG ; Hui XU ; Mengliang YE ; Zhengwei ZHANG ; Jie FU ; Haojian ZHANG ; Jinyue LU ; Zhao ZHAI ; Jingyue WANG ; Yi ZHAO ; Hengtong ZUO ; Xiang HUI ; Jiandong JIANG ; Yan WANG
Acta Pharmaceutica Sinica B 2025;15(10):5244-5260
In recent decades, the prevalence of hyperuricemia and gout has increased dramatically due to lifestyle changes. The drugs currently recommended for hyperuricemia are associated with adverse reactions that limit their clinical use. In this study, we report that berberine (BBR) is an effective drug candidate for the treatment of hyperuricemia, with its mechanism potentially involving the modulation of gut microbiota and its metabolite, succinic acid. BBR has demonstrated good therapeutic effects in both acute and chronic animal models of hyperuricemia. In a clinical trial, oral administration of BBR for 6 months reduced blood uric acid levels in 22 participants by modulating the gut microbiota, which led to an increase in the abundance of Bacteroides and a decrease in Clostridium sensu stricto_1. Furthermore, Bacteroides fragilis was transplanted into ICR mice, and the results showed that Bacteroides fragilis exerted a therapeutic effect on uric acid similar to that of BBR. Notably, succinic acid, a metabolite of Bacteroides, significantly reduced uric acid levels. Subsequent cell and animal experiments revealed that the intestinal metabolite, succinic acid, regulated the upstream uric acid synthesis pathway in the liver by inhibiting adenosine monophosphate deaminase 2 (AMPD2), an enzyme responsible for converting adenosine monophosphate (AMP) to inosine monophosphate (IMP). This inhibition resulted in a decrease in IMP levels and an increase in phosphate levels. The reduction in IMP led to a decreased downstream production of hypoxanthine, xanthine, and uric acid. BBR also demonstrated excellent renoprotective effects, improving nephropathy associated with hyperuricemia. In summary, BBR has the potential to be an effective treatment for hyperuricemia through the gut-liver axis.

Result Analysis
Print
Save
E-mail