1.Genomic and cellular infection characteristics of a newly isolated Mangshi virus in China
Heng YANG ; Zhan-Hong LI ; Lei XIAO ; Zhuo-Ran LI ; Jia-Rui XIE ; De-Fang LIAO ; Lin GAO ; Hua-Chun LI
Chinese Journal of Zoonoses 2024;40(6):504-511,528
The genomic characteristics and cellular tropism of a Mangshi virus(MSV)isolated in China were investigated,thereby establishing a robust foundation for further research on the evolution and pathogenicity of MSV.The genome sequence of MSV strain V301/YNJH/2019 was obtained by next-generation sequencing,followed by phylogenetic tree construction and rearrangement assessment using software IQtree,RPD4,and Simplot.Viral proliferation was assessed in C6/36(Aedes albop-ictus),Vero(African green monkey kidney),and BHK(baby hamster kidney)cells.An initial epidemiological investigation of MSV in local cattle and goats was conducted using the serum neutralization test.The genome of MSV strain V301/YNJ H/2019 was 20623 bp in length,encompassing 12 segments of double-stranded RNA(Seg-1 to Seg-12).Sequence analysis confirmed genomic rearrangement of the Seg-1 and Seg-11 sequences,ex-hibiting high similarity to MSV isolated from lake sediment in China in 2022,while Seg-2 to Seg-10 and Seg-12 were most closely related to a MSV strain isolated from mosquitoes in China in 2013.The virus efficiently proliferated and induced sig-nificant cytopathic effects(CPE)in both C6/36 and BHK cells,but limited replication and no observable CPE in Vero cells.No detectable neutralizing antibodies against MSV were detected in 20 goat serum samples collected in Mangshi,while 2 of 20 bo-vine serum samples were positive with neutralizing antibody titers of 1:128 and 1:54.Whole genome sequencing revealed re-assortment events of the V301/YNJH/2019 strain,which is capable of infecting C6/36,BHK,and Vero cells.MSV infection was confirmed in cattle in Mangshi.
2.Establishment and Evaluation Strategy of an in Vitro Cell Model of Bone Marrow Microenvironment Injury in Mouse Acute Graft-Versus-Host Disease
Jia-Yi TIAN ; Pei-Lin LI ; Jie TANG ; Run-Xiang XU ; Bo-Feng YIN ; Fei-Yan WANG ; Xiao-Tong LI ; Hong-Mei NING ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2024;32(2):617-624
Objective:To establish a mesenchymal stem cell(MSC)-based in vitro cell model for the evaluation of mouse bone marrow acute graft-versus-host disease(aGVHD).Methods:Female C57BL/6N mice aged 6-8 weeks were used as bone marrow and lymphocyte donors,and female BALB/c mice aged 6-8 weeks were used as aGVHD recipients.The recipient mouse received a lethal dose(8.0 Gy,72.76 cGy/min)of total body γ irradiation,and injected with donor mouse derived bone marrow cells(1× 107/mouse)in 6-8 hours post irradiation to establish a bone marrow transplantation(BMT)mouse model(n=20).In addition,the recipient mice received a lethal dose(8.0 Gy,72.76 cGy/min)of total body γ irradiation,and injected with donor mouse derived bone marrow cells(1 × 107/mouse)and spleen lymphocytes(2 × 106/mouse)in 6-8 hours post irradiation to establish a mouse aGVHD model(n=20).On the day 7 after modeling,the recipient mice were anesthetized and the blood was harvested post eyeball enucleation.The serum was collected by centrifugation.Mouse MSCs were isolated and cultured with the addition of 2%,5%,and 10%recipient serum from BMT group or aGVHD group respectively.The colony-forming unit-fibroblast(CFU-F)experiment was performed to evaluate the potential effects of serums on the self-renewal ability of MSC.The expression of CD29 and CD105 of MSC was evaluated by immunofluorescence staining.In addition,the expression of self-renewal-related genes including Oct-4,Sox-2,and Nanog in MSC was detected by real-time fluorescence quantitative PCR(RT-qPCR).Results:We successfully established an in vitro cell model that could mimic the bone marrow microenvironment damage of the mouse with aGVHD.CFU-F assay showed that,on day 7 after the culture,compared with the BMT group,MSC colony formation ability of aGVHD serum concentrations groups of 2%and 5%was significantly reduced(P<0.05);after the culture,at day 14,compared with the BMT group,MSC colony formation ability in different aGVHD serum concentration was significantly reduced(P<0.05).The immunofluorescence staining showed that,compared with the BMT group,the proportion of MSC surface molecules CD29+and CD 105+cells was significantly dereased in the aGVHD serum concentration group(P<0.05),the most significant difference was at a serum concentration of 10%(P<0.001,P<0.01).The results of RT-qPCR detection showed that the expression of the MSC self-renewal-related genes Oct-4,Sox-2,and Nanog was decreased,the most significant difference was observed at an aGVHD serum concentration of 10%(P<0.01,P<0.001,P<0.001).Conclusion:By co-culturing different concentrations of mouse aGVHD serum and mouse MSC,we found that the addition of mouse aGVHD serum at different concentrations impaired the MSC self-renewal ability,which providing a new tool for the field of aGVHD bone marrow microenvironment damage.
3.Preparation and Evaluation of Poloxamer/Carbopol In-Situ Gel Loaded with Quercetin: In-Vitro Drug Release and Cell Viability Study
Pinxuan ZHENG ; Xueying LIU ; Yanqing JIAO ; Xuran MAO ; Zhaorong ZONG ; Qi JIA ; Heng Bo JIANG ; Eui-Seok LEE ; Qi CHEN
Tissue Engineering and Regenerative Medicine 2024;21(8):1153-1171
BACKGROUND:
Periodontitis is a severe chronic inflammatory disease, whose traditional systemic antimicrobial therapy faces great limitations. In-situ gels provide an effective solution as an emerging local drug delivery system.
METHODS:
In this study, the novel thermosensitive poloxamer/carbopol in-situ gels loaded with 20 lmol/L quercetin for the treatment of periodontitis were prepared by cold method. Thirteen batches of in-situ gels based on two independent factors (X1 : poloxamer 407 and X2 : carbopol 934P) were designed and optimized by the statistical method of central composite design (CCD). The transparency, pH, injectability, viscosity, gelation temperature, gelation time, elasticity modulus, degradation rate and in-vitro drug release studies of the batches were evaluated, and the percentage of drug release in the first hour, the time required for 90% drug release, gelation temperature, and gelation time were selected as dependent variables.
RESULTS:
These two independent factors significantly affected the four dependent variables (p < 0.05). The optimization result displayed that the optimized concentration of poloxamer 407 was 20.84% (w/v), and carbopol 934P was 0.5% (w/v). The optimized formulation showed a clear appearance (++), acceptable injectability (Pass), viscosity(151,798 mPa s), gelation temperature (36 °C), gelation time (213 s), preferable cell viability and cell proliferation, conformed to first-order release kinetics, and had a significant antibacterial effect.
CONCLUSIONS
The article demonstrates the great potential of the quercetin in-situ gel as an effective treatment for periodontitis.
4.The mechanisms and salvage treatment strategies underlying positive relapse following CD19 CAR-T cell therapy in B-acute lymphoblastic leukemia
Chinese Journal of Hematology 2024;45(10):970-976
Approximately 50% of patients suffering from relapsed/refractory B-acute lymphoblastic leukemia (R/R B-ALL), experience relapse within one year, with around 60% of these relapses being antigen-positive, despite the transformative impact of chimeric antigen receptor (CAR) T cell therapy. The mechanisms underlying relapse are primarily associated with tumor heterogeneity, CAR-T cell dysfunction, subopimal in vivo expansion and persistence, and an inhibitory immune microenvironment. This review aims to investigate salvage strategies designed to enhance outcomes for patients undergoing relapse or disease progression following the CAR-T cell therapy. These strategies include a second CAR-T cell infusion that targets either the same antigen or an alternative target, the administration of immune checkpoint inhibitors, and the utilization of novel targeted therapies including monoclonal antibodies, antibody-conjugated drugs and small molecule compounds aimed at mitigating CD19-positive relapse or overcoming CAR-T cell resistance. Nevertheless, achieving improved long-term survival for these patients continues be challenging.
5.Development status and countermeasures of medical device industry in Jilin Province
Yu-Heng YANG ; Wen-Yuan JIA ; Yun LIU ; Yong-Zheng YAN ; Yun-Gang LUO ; Guo-Min LIU
Chinese Medical Equipment Journal 2024;45(7):67-71
The development status of medical device industry in Jilin Province was described,and the main problems during the development of medical device industry in Jilin Province was analyzed.Some countermeasures were put forward including enlarging the industrial scale,constructing business incubators in the field of medical device,guaranteeing the market access of the products,accelerating the registration and approval,strengthening the cross-discipline construction and forming medical-industrial institutes.References were provided for the development of medical device industry in Jilin Province.[Chinese Medical Equipment Journal,2024,45(7):67-71]
6.Preparation and Evaluation of Poloxamer/Carbopol In-Situ Gel Loaded with Quercetin: In-Vitro Drug Release and Cell Viability Study
Pinxuan ZHENG ; Xueying LIU ; Yanqing JIAO ; Xuran MAO ; Zhaorong ZONG ; Qi JIA ; Heng Bo JIANG ; Eui-Seok LEE ; Qi CHEN
Tissue Engineering and Regenerative Medicine 2024;21(8):1153-1171
BACKGROUND:
Periodontitis is a severe chronic inflammatory disease, whose traditional systemic antimicrobial therapy faces great limitations. In-situ gels provide an effective solution as an emerging local drug delivery system.
METHODS:
In this study, the novel thermosensitive poloxamer/carbopol in-situ gels loaded with 20 lmol/L quercetin for the treatment of periodontitis were prepared by cold method. Thirteen batches of in-situ gels based on two independent factors (X1 : poloxamer 407 and X2 : carbopol 934P) were designed and optimized by the statistical method of central composite design (CCD). The transparency, pH, injectability, viscosity, gelation temperature, gelation time, elasticity modulus, degradation rate and in-vitro drug release studies of the batches were evaluated, and the percentage of drug release in the first hour, the time required for 90% drug release, gelation temperature, and gelation time were selected as dependent variables.
RESULTS:
These two independent factors significantly affected the four dependent variables (p < 0.05). The optimization result displayed that the optimized concentration of poloxamer 407 was 20.84% (w/v), and carbopol 934P was 0.5% (w/v). The optimized formulation showed a clear appearance (++), acceptable injectability (Pass), viscosity(151,798 mPa s), gelation temperature (36 °C), gelation time (213 s), preferable cell viability and cell proliferation, conformed to first-order release kinetics, and had a significant antibacterial effect.
CONCLUSIONS
The article demonstrates the great potential of the quercetin in-situ gel as an effective treatment for periodontitis.
7.Preparation and Evaluation of Poloxamer/Carbopol In-Situ Gel Loaded with Quercetin: In-Vitro Drug Release and Cell Viability Study
Pinxuan ZHENG ; Xueying LIU ; Yanqing JIAO ; Xuran MAO ; Zhaorong ZONG ; Qi JIA ; Heng Bo JIANG ; Eui-Seok LEE ; Qi CHEN
Tissue Engineering and Regenerative Medicine 2024;21(8):1153-1171
BACKGROUND:
Periodontitis is a severe chronic inflammatory disease, whose traditional systemic antimicrobial therapy faces great limitations. In-situ gels provide an effective solution as an emerging local drug delivery system.
METHODS:
In this study, the novel thermosensitive poloxamer/carbopol in-situ gels loaded with 20 lmol/L quercetin for the treatment of periodontitis were prepared by cold method. Thirteen batches of in-situ gels based on two independent factors (X1 : poloxamer 407 and X2 : carbopol 934P) were designed and optimized by the statistical method of central composite design (CCD). The transparency, pH, injectability, viscosity, gelation temperature, gelation time, elasticity modulus, degradation rate and in-vitro drug release studies of the batches were evaluated, and the percentage of drug release in the first hour, the time required for 90% drug release, gelation temperature, and gelation time were selected as dependent variables.
RESULTS:
These two independent factors significantly affected the four dependent variables (p < 0.05). The optimization result displayed that the optimized concentration of poloxamer 407 was 20.84% (w/v), and carbopol 934P was 0.5% (w/v). The optimized formulation showed a clear appearance (++), acceptable injectability (Pass), viscosity(151,798 mPa s), gelation temperature (36 °C), gelation time (213 s), preferable cell viability and cell proliferation, conformed to first-order release kinetics, and had a significant antibacterial effect.
CONCLUSIONS
The article demonstrates the great potential of the quercetin in-situ gel as an effective treatment for periodontitis.
8.The relationship between body mass index and clinicopathologic characteristics of idiopathic membranous nephropathy
Hong HUANG ; Heng LI ; Kaiyuan FAN ; Li WEI ; Li DING ; Junya JIA ; Tiekun YAN ; Dong LI
Tianjin Medical Journal 2024;52(8):815-820
Objective To investigate the effect of body mass index(BMI)on the clinicopathological characteristics of patients with idiopathic membranous nephropathy(IMN).Methods A total of 261 patients with IMN were divided into the normal group(66 cases),the overweight group(105 cases)and the obese group(90 cases)according to BMI.Clinical and renal pathological data of patients were compared between the three groups.The correlation between BMI and clinicopathological indexes was analyzed by Pearson or Spearman's correlation.The influencing factors of estimated glomerular filtration rate(eGFR)were analyzed by multiple linear regression,and the influencing factors of interstitial fibrosis(IF),tubular atrophy(TA),glomerulosclerosis(GS)and mesangial cell proliferation(MCP)were analyzed by binary Logistic regression.Results Compared with the normal group,the prevalence of diabetes mellitus,triglycerides(TG)and low-density lipoprotein cholesterol(LDL-C)were elevated in the overweight group.The prevalence of hypertension,hemoglobin(HGB),uric acid(UA),LDL-C,TG,24-h urinary protein(UTP)and serum complement 3(C3)were elevated,and high-density lipoprotein cholesterol(HDL-C)was decreased in the obese group(P<0.05).The prevalence of hypertension,UA,TG and serum C3 were elevated in the obese group compared to the overweight group(P<0.05).The glomerular basement membrane(GBM)thickness was higher in the obese group and the overweight group than that in the normal group,and the proportion of GS and IF was higher in the obese group than that in the normal group(P<0.05).BMI was positively correlated with hypertension,TG,LDL-C,serum C3,UTP,GS,IF,MCP and deposition in the mesangial region of C3,and negatively correlated with HDL-C(P<0.05).Multiple linear regression analysis showed that age,blood urea nitrogen(BUN),anti-phospholipase A2 receptor antibody(anti-PLA2R),UTP and TA were independent risk factors of eGFR.Binary Logistic regression analysis showed that elevated BMI,age,UTP and serum creatinine(Scr)were independent risk factors for IF.Age,Scr and elevated UA were independent risk factors for TA.Elevated BMI and decreased eGFR were independent risk factors for GS.Elevated BMI was an independent risk factor for MCP.There was no significant difference in the treatment protocol of IMN patients between the three groups.Conclusion Obesity can exacerbate multiple clinical and pathological outcomes in IMN patients.
9.Synthesis and anti-SARS-CoV-2 activity and mechanism research of lycorine derivatives
Yu-heng MEI ; Jia-yu LI ; Dan-qing SONG ; Zong-gen PENG ; Ying-hong LI
Acta Pharmaceutica Sinica 2024;59(2):395-403
We designed and synthesized eighteen lycorine derivatives with five different structural types, and evaluated their antiviral activities on a HCoV-OC43-infected H460 cell model. Structure-activity relationships suggested that the introduction of appropriate substituents on the 6N atom of lycorine was beneficial to activity. Compound
10.Electrochemical Detection of Metronidazole Based on MnMoO4/g-C3N4 Modified Electrode
Rui LIU ; Tian-Heng WU ; Ri-Jia LIU ; Yuan SUN
Chinese Journal of Analytical Chemistry 2024;52(2):220-230,中插8-中插10
MnMoO4/g-C3N4 nanocomposites were synthesized by a hydrothermal method.The MnMoO4/g-C3N4 nanocomposites were characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR)and transmission electron microscopy(SEM)to analyze their morphology and structure.The MnMoO4/g-C3N4 was coated on the surface of the glassy carbon electrode(GCE)by a drop coating method and thus a electrochemical sensor for detection of metronidazole(MNZ)was successfully constructed.The electrochemical properties of the MnMoO4/g-C3N4/GCE electrode were characterized by cyclic voltammetry(CV)and differential pulse voltammetry(DPV).The effects of pH value and scanning rate on the current response were investigated.Under optimal experimental conditions,this electrochemical sensor showed a wide linear detection range(0.5-2400 μmol/L)and a low limit of detection(LOD = 1.33 nmol/L,3σ/k)for detection of MNZ.Besides,this sensor showed excellent selectivity,stability and reproducibility.The sensor was used to detect MNZ residue in eggs and milk samples,with recoveries of 97.7%-103.7%and 96.9%-102.4%,and relative standard deviations of 1.1%-2.2%,respectively,indicating that the prepared MnMoO4/g-C3N4/GCE sensor could be successfully applied to detection of MNZ in food samples.

Result Analysis
Print
Save
E-mail