1.A rapid method for detecting prfA and hly toxin genes of Listeria monocytogenes using double nucleic acid colloidal gold strips.
Yan LIU ; Jianyu YANG ; Yujiao ZHOU ; Wenbo DING ; Xianyu ZHANG ; Linran GAO ; Beizhen PAN ; Jifei YANG ; Yundong ZHAO
Journal of Southern Medical University 2025;45(2):387-394
OBJECTIVES:
To detect prfA and hly toxin genes of Listeria monocytogenes using polymerase chain reaction (PCR) and colloidal gold technology.
METHODS:
L. monocytogenes DNA was extracted by boiling method. With prfA and hly of L. monocytogenes as the target genes, the 5' ends of upstream and downstream primers of prfA gene were labeled with 6-FAM and biotin, and the 5' ends of upstream and downstream primers of hly gene were labeled with digoxin and biotin, respectively, to establish the toxin gene detection method. Using cloning transformation, sequencing analysis, cloning of positive control products, the detection kid was developed and its specificity, sensitivity, reproducibility and stability were tested, followed by verification with sample testing.
RESULTS:
The concentration of L. monocytogenes DNA extracted by boiling method was 148.81±0.97 ng/μL, and the A260/A280 ratio ranged from 1.8 to 2.0. The PCR products showed a 100% homology with the gene sequences in GenBank database after cloning, transformation and sequencing. The colloidal gold strip yielded positive results only for L. monocytogenes samples without cross-reactions with Staphylococcus aureus, Escherichia coli or Bacillus cereus, and its minimum detection limit was 10-2 ng/μL, demonstrating a 10-fold greater sensitivity of the test than agarose gel electrophoresis. The test also showed good reproducibility of the results when performed by different operators with good stability of the test strips after storage for 6 to 12 months. The test results showed that this kit could accurately and quickly detect L.monocytogenes in the test samples.
CONCLUSIONS
The detection kit developed in this study can simultaneously detect prfA and hly toxin genes of L. monocytogenes with good specificity, sensitivity, reproducibility and stability for use in food safety inspection.
Listeria monocytogenes/isolation & purification*
;
Gold Colloid
;
Bacterial Toxins/genetics*
;
Polymerase Chain Reaction/methods*
;
Hemolysin Proteins/genetics*
;
Bacterial Proteins/genetics*
;
DNA, Bacterial/genetics*
;
Food Microbiology
;
Heat-Shock Proteins
2.Targeted innovative design of Bt Cry toxin insecticidal mimics.
Chongxin XU ; Yuan LIU ; Xiao ZHANG ; Xianjin LIU
Chinese Journal of Biotechnology 2023;39(2):446-458
Bt Cry toxin is the mostly studied and widely used biological insect resistance protein, which plays a leading role in the green control of agricultural pests worldwide. However, with the wide application of its preparations and transgenic insecticidal crops, the resistance to target pests and potential ecological risks induced by the drive are increasingly prominent and attracting much attention. The researchers seek to explore new insecticidal protein materials that can simulate the insecticidal function of Bt Cry toxin. This will help to escort the sustainable and healthy production of crops, and relieve the pressure of target pests' resistance to Bt Cry toxin to a certain extent. In recent years, the author's team has proposed that Ab2β anti-idiotype antibody has the property of mimicking antigen structure and function based on the "Immune network theory" of antibody. With the help of phage display antibody library and specific antibody high-throughput screening and identification technology, Bt Cry toxin antibody was designed as the coating target antigen, and a series of Ab2β anti-idiotype antibodies (namely Bt Cry toxin insecticidal mimics) were screened from the phage antibody library. Among them, the lethality of Bt Cry toxin insecticidal mimics with the strongest activity was close to 80% of the corresponding original Bt Cry toxin, showing great promise for the targeted design of Bt Cry toxin insecticidal mimics. This paper systematically summarized the theoretical basis, technical conditions, research status, and discussed the development trend of relevant technologies and how to promote the application of existing achievements, aiming to facilitate the research and development of green insect-resistant materials.
Insecticides/metabolism*
;
Bacillus thuringiensis
;
Endotoxins/pharmacology*
;
Bacillus thuringiensis Toxins/metabolism*
;
Hemolysin Proteins/pharmacology*
;
Bacterial Proteins/chemistry*
;
Plants, Genetically Modified/genetics*
;
Pest Control, Biological
3.Advances in receptor-mediated resistance mechanisms of Lepidopteran insects to Bacillus thuringiensis toxin.
Leilei LIU ; Peiwen XU ; Kaiyu LIU ; Wei WEI ; Zhongshen CHANG ; Dahui CHENG
Chinese Journal of Biotechnology 2022;38(5):1809-1823
Bacillus thuringiensis is widely used as an insecticide which is safe and environmentally friendly to humans and animals. One of the important insecticidal mechanisms is the binding of Bt toxins to specific toxin receptors in insect midgut and forming a toxin perforation which eventually leads to insect death. The resistance of target pests to Bt toxins is an important factor hampering the long-term effective cultivation of Bt crops and the continuous use of Bt toxins. This review summarizes the mechanism of insect resistance to Bt toxins from the perspective of important Bt toxin receptors in midgut cells of Lepidopteran insects, which may facilitate the in-depth study of Bt resistance mechanism and pest control.
Animals
;
Bacillus thuringiensis/genetics*
;
Bacillus thuringiensis Toxins
;
Bacterial Proteins/metabolism*
;
Endotoxins/metabolism*
;
Hemolysin Proteins/metabolism*
;
Insecta/metabolism*
;
Insecticide Resistance/genetics*
;
Insecticides/pharmacology*
;
Pest Control, Biological
4.Molecular characterization and efficacy evaluation of a transgenic corn event for insect resistance and glyphosate tolerance.
Miao-Miao LIU ; Xiao-Jing ZHANG ; Yan GAO ; Zhi-Cheng SHEN ; Chao-Yang LIN
Journal of Zhejiang University. Science. B 2018;19(8):610-619
A transgenic maize event ZD12-6 expressing a Bacillus thuringiensis (Bt) fusion protein Cry1Ab/Cry2Aj and a modified 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) protein G10 was characterized and evaluated. Southern blot analysis indicated that ZD12-6 is a single copy integration event. The insert site was determined to be at chromosome 1 by border sequence analysis. Expression analyses of Bt fusion protein Cry1Ab/Cry2Aj and the EPSPS protein G10 suggested that they are both expressed stably in different generations. Insect bioassays demonstrated that the transgenic plants are highly resistant to Asian corn borer (Ostrinia furnacalis), cotton boll worm (Helicoverpa armigera), and armyworm (Mythimna separata). This study suggested that ZD12-6 has the potential to be developed into a commercial transgenic line.
3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism*
;
Animals
;
Bacillus thuringiensis Toxins
;
Bacterial Proteins/metabolism*
;
China
;
Disease Resistance/genetics*
;
Drug Resistance/genetics*
;
Endotoxins/metabolism*
;
Gene Expression Profiling
;
Glycine/chemistry*
;
Hemolysin Proteins/metabolism*
;
Insecta
;
Plant Diseases/prevention & control*
;
Plants, Genetically Modified/genetics*
;
Zea mays/genetics*
;
Glyphosate
5.Bt transgenic crops for insect-resistance and modification of Bt protein and utilization of stacking strategy.
Chinese Journal of Biotechnology 2015;31(1):53-64
Insecticidal protein genes from Bacillus thuringiensis are currently the most widely used insect-resistant genes. They have been transferred to many crops for breeding and production. Among them, cotton, maize, potato and other insect-resistant crops are commercialized, creating considerable economic benefit. In this review, we summarized advances in identifying functional genes and transgenic crops for insect resistance, compared different strategies for enhancing vigor of insecticidal protein and utilizing gene stacking as well as listing valuable groups of stacked genes. In addition, the methods for multiple gene transformation was discussed.
Animals
;
Bacterial Proteins
;
genetics
;
Crops, Agricultural
;
genetics
;
Endotoxins
;
genetics
;
Hemolysin Proteins
;
genetics
;
Insecta
;
Plants, Genetically Modified
6.Flexibility Analysis of Bacillus thuringiensis Cry1Aa.
Xin Min ZHAO ; Li Qiu XIA ; Xiao Ping YANG ; Xiao Yun PENG
Biomedical and Environmental Sciences 2015;28(9):634-641
OBJECTIVETo investigate the flexibility and mobility of the Bacillus thuringiensis toxin Cry1Aa.
METHODSThe graph theory-based program Constraint Network Analysis and normal mode-based program NMsim were used to analyze the global and local flexibility indices as well as the fluctuation of individual residues in detail.
RESULTSThe decrease in Cry1Aa network rigidity with the increase of temperature was evident. Two phase transition points in which the Cry1Aa structure lost rigidity during the thermal simulation were identified. Two rigid clusters were found in domains I and II. Weak spots were found in C-terminal domain III. Several flexible regions were found in all three domains; the largest residue fluctuation was present in the apical loop2 of domain II.
CONCLUSIONAlthough several flexible regions could be found in all the three domains, the most flexible regions were in the apical loops of domain II.
Bacillus thuringiensis ; Bacterial Proteins ; chemistry ; genetics ; metabolism ; Cluster Analysis ; Computer Simulation ; Endotoxins ; chemistry ; genetics ; metabolism ; Entropy ; Hemolysin Proteins ; chemistry ; genetics ; metabolism ; Models, Structural ; Mutation ; Protein Conformation ; Protein Unfolding ; Software ; Temperature
7.Elucidating the role of ApxI in hemolysis and cellular damage by using a novel apxIA mutant of Actinobacillus pleuropneumoniae serotype 10.
Nai Yun CHANG ; Zeng Weng CHEN ; Ter Hsin CHEN ; Jiunn Wang LIAO ; Cheng Chung LIN ; Maw Sheng CHIEN ; Wei Cheng LEE ; Jiunn Horng LIN ; Shih Ling HSUAN
Journal of Veterinary Science 2014;15(1):81-89
Exotoxins produced by Actinobacillus (A.) pleuropneumoniae (Apx) play major roles in the pathogenesis of pleuropneumonia in swine. This study investigated the role of ApxI in hemolysis and cellular damage using a novel apxIA mutant, ApxIA336, which was developed from the parental strain A. pleuropneumoniae serotype 10 that produces only ApxI in vitro. The genotype of ApxIA336 was confirmed by PCR, Southern blotting, and gene sequencing. Exotoxin preparation derived from ApxIA336 was analyzed for its bioactivity towards porcine erythrocytes and alveolar macrophages. Analysis results indicated that ApxIA336 contained a kanamycin-resistant cassette inserted immediately after 1005 bp of the apxIA gene. Phenotype analysis of ApxIA336 revealed no difference in the growth rate as compared to the parental strain. Meanwhile, ApxI production was abolished in the bacterial culture supernatant, i.e. exotoxin preparation. The inability of ApxIA336 to produce ApxI corresponded to the loss of hemolytic and cytotoxic bioactivity in exotoxin preparation, as demonstrated by hemolysis, lactate dehydrogenase release, mitochondrial activity, and apoptosis assays. Additionally, the virulence of ApxIA336 appeared to be attenuated by 15-fold in BALB/c mice. Collectively, ApxI, but not other components in the exotoxin preparation of A. pleuropneumoniae serotype 10, was responsible for the hemolytic and cytotoxic effects on porcine erythrocytes and alveolar macrophages.
Actinobacillus pleuropneumoniae/genetics/*pathogenicity/*physiology
;
Animals
;
*Apoptosis
;
Bacterial Proteins/genetics/metabolism
;
Blotting, Southern
;
Exotoxins/*genetics
;
Hemolysin Proteins/genetics/metabolism
;
*Hemolysis
;
Macrophages, Alveolar/metabolism/*microbiology
;
Polymerase Chain Reaction
;
Sequence Analysis, DNA
;
Swine
;
Virulence
8.Comparison of codon optimizations of cry1Ah1 gene in rice.
Zongliang ZHOU ; Zhimin LIN ; Lili GENG ; Jun SU ; Changlong SHU ; Feng WANG ; Yanming ZHU ; Jie ZHANG
Chinese Journal of Biotechnology 2012;28(10):1184-1194
cry1Ah1, one of holo-type cry genes, cloned in this laboratory from Bacillus thuringiensis strain has been patented in China, and it encoded a protein with strong insecticidal activity against certain lepidopteran insect pests, such as Chilo suppressalis. cry1Ah1 gene is exhibiting good application prospects. In order to improve the expression level of cry1Ah1 gene in rice, and investigate the effect of codon usage preference of gene expression, we designed five different optimized schemes for cry1Ah1 insecticidal critical fragment in accordance with bias of rice codon, to improve G+C content, removed the shear signal and unstable factors. Optimized cry1Ah1 genes were transformed into Escherichia coli Rosetta (DE3) respectively, and 65 kDa polypeptides was expressed normally in inclusion body separately. All of these expressed polypeptides showed insecticidal activity against 2nd-instar larvae of Plutella xylostella and neonate of Chilo suppressalis. After transformation with modified cry1Ah1 genes into Var nippobare, the transgenic rice seedlings were detected by PCR, the positive rate containing target gene was more than 87%. Afterwards, the results of real-time RT-PCR and ELISA assay indicated that the highest expression level of five modified cry1Ah1 genes was that using the highest frequent codons. Average expression amount of Cry1Ah1 polypeptides was 0.104% of total soluble proteins from the positive transgenic rice.
Animals
;
Bacillus thuringiensis
;
genetics
;
metabolism
;
Bacterial Proteins
;
biosynthesis
;
genetics
;
Cloning, Molecular
;
Codon
;
genetics
;
Endotoxins
;
biosynthesis
;
genetics
;
Hemolysin Proteins
;
biosynthesis
;
genetics
;
Insecticides
;
Lepidoptera
;
Oryza
;
genetics
;
Pest Control, Biological
;
methods
;
Plants, Genetically Modified
;
genetics
;
Recombinant Proteins
;
biosynthesis
;
genetics
9.Virulence factors and genetic variability of uropathogenic Escherichia coli isolated from dogs and cats in Italy.
Clara TRAMUTA ; Daniele NUCERA ; Patrizia ROBINO ; Sara SALVARANI ; Patrizia NEBBIA
Journal of Veterinary Science 2011;12(1):49-55
In this study, the association between virulence genotypes and phylogenetic groups among Escherichia (E.) coli isolates obtained from pet dogs and cats with cystitis was detected, and fingerprinting methods were used to explore the relationship among strains. Forty uropathogenic E. coli (UPEC) isolated from dogs (n = 30) and cats (n = 10) in Italy were analysed by polymerase chain reaction (PCR) for the presence of virulence factors and their classification into phylogenetic groups. The same strains were characterized by repetitive extragenic palindromic (REP)- and enterobacterial repetitive intergenic consensus (ERIC)-PCR techniques. We found a high number of virulence factors such as fimbriae A, S fimbriae (sfa) and cytotoxic necrotizing factor 1 (cnf1) significantly associated with phylogenetic group B2. We demonstrated a high correlation between alpha-hemolysin A and pyelonephritis C, sfa, and cnf1 operons, confirming the presence of pathogenicity islands in these strains. In addition, UPEC belonging to group B2 harboured a greater number of virulence factors than strains from phylogenetic groups A, B1, and D. REP- and ERIC-PCR grouped the UPEC isolates into two major clusters, the former grouping E. coli strains belonging to phylogenetic group B2 and D, the latter grouping those belonging to groups A and B1. Given the significant genetic variability among the UPEC strains found in our study, it can be hypothesized that no specific genotype is responsible for cystitis in cats or dogs.
Animals
;
Bacterial Proteins/analysis
;
Bacterial Toxins/analysis
;
Cat Diseases/microbiology
;
Cats
;
Cystitis/*microbiology
;
Dog Diseases/microbiology
;
Dogs
;
Escherichia coli Infections/complications/microbiology/*veterinary
;
Escherichia coli Proteins/analysis
;
Female
;
Genetic Variation
;
Hemolysin Proteins/analysis
;
Italy
;
Male
;
Operon
;
Phylogeny
;
Polymerase Chain Reaction
;
Pyelonephritis/*microbiology
;
Uropathogenic Escherichia coli/classification/*genetics/i
;
Virulence Factors/*genetics
10.Generation of transgenic corn-derived Actinobacillus pleuropneumoniae ApxIIA fused with the cholera toxin B subunit as a vaccine candidate.
Min Kyoung SHIN ; Myung Hwan JUNG ; Won Jung LEE ; Pil Son CHOI ; Yong Suk JANG ; Han Sang YOO
Journal of Veterinary Science 2011;12(4):401-403
Corn, one of the most important forage crops worldwide, has proven to be a useful expression vehicle due to the availability of established transformation procedures for this well-studied plant. The exotoxin Apx, a major virulence factor, is recognized as a common antigen of Actinobacillus (A.) pleuropneumoniae, the causative agent of porcine pleuropneumonia. In this study, a cholera toxin B (CTB)-ApxIIA#5 fusion protein and full-size ApxIIA expressed in corn seed, as a subunit vaccine candidate, were observed to induce Apx-specific immune responses in mice. These results suggest that transgenic corn-derived ApxIIA and CTB-ApxIIA#5 proteins are potential vaccine candidates against A. pleuropneumoniae infection.
Actinobacillus Infections/microbiology/*prevention & control
;
Actinobacillus pleuropneumoniae
;
Animals
;
Antigens, Bacterial/immunology
;
Bacterial Proteins/*immunology
;
Bacterial Vaccines/*immunology
;
Cholera Toxin/*chemistry
;
Female
;
Hemolysin Proteins/*immunology
;
Immunization, Secondary
;
Mice
;
Mice, Inbred ICR
;
Plants, Genetically Modified
;
Zea mays/*genetics

Result Analysis
Print
Save
E-mail