1.Network pharmacology and animal experiments reveal molecular mechanisms of Cordyceps sinensis in ameliorating heart aging and injury in mice by regulating Nrf2/HO-1/NF-κB pathway.
Si-Yi LIU ; Yue TU ; Wei-Ming HE ; Wen-Jie LIU ; Kai-Zhi WEN ; Cheng-Juan LI ; Chao HAN ; Xin-Yu LIANG
China Journal of Chinese Materia Medica 2025;50(4):1063-1074
This study aims to explore the effects and mechanisms of the traditional Chinese medicine Cordyceps sinensis(CS) in ameliorating heart aging and injury in mice based on animal experiments and network pharmacology. A mouse model of heart aging was established by continuously subcutaneous injection of D-galactose(D-gal). Thirty mice were randomly assigned into a normal group, a model group, a low-dose CS(CS-L) group, a high-dose CS(CS-H) group, and a vitamin E(VE) group. Mice in these groups were administrated with normal saline, different doses of CS suspension, or VE suspension via gavage daily. After 60 days of treatment with D-gal and various drugs, all mice were euthanized, and blood and heart tissue samples were collected for determination of the indicators related to heart aging and injury in mice. Experimental results showed that both high and low doses of CS and VE ameliorated the aging phenotype, improved the heart index and myocardial enzyme spectrum, restored the expression levels of proteins associated with cell cycle arrest and senescence-associated secretory phenotypes(SASP), and alleviated the fibrosis and histopathological changes of the heart tissue in model mice. From the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP),259 active ingredients of CS were retrieved. From Gene Cards and OMIM, 2 568 targets related to heart aging were identified, and 133common targets shared by CS and heart aging were obtained. The Gene Ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes( KEGG) pathway enrichment revealed that the pathways related to heart aging involved oxidative stress,apoptosis, inflammation-related signaling pathways, etc. The animal experiment results showed that both high and low doses of CS and VE ameliorated oxidative stress and apoptosis in the heart tissue to varying degrees in model mice. Additionally, CS-H and VE activated the nuclear factor E2-related factor 2(Nrf2)/heme oxygenase-1(HO-1) pathway and inhibited the expression of key proteins in the nuclear factor-κB(NF-κB) pathway in the heart tissue of model mice. In conclusion, this study demonstrated based on network pharmacology and animal experiments that CS may alleviate heart aging and injury in aging mice by reducing oxidative stress,apoptosis, and inflammation in the heart via the Nrf2/HO-1/NF-κB pathway.
Animals
;
Cordyceps/chemistry*
;
Mice
;
NF-E2-Related Factor 2/genetics*
;
NF-kappa B/genetics*
;
Aging/genetics*
;
Male
;
Signal Transduction/drug effects*
;
Network Pharmacology
;
Drugs, Chinese Herbal/pharmacology*
;
Heme Oxygenase-1/genetics*
;
Heart/drug effects*
;
Humans
;
Myocardium/metabolism*
;
Membrane Proteins/genetics*
2.Fucoidan sulfate regulates Hmox1-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy.
Yu-Feng CAI ; Wei HU ; Yi-Gang WAN ; Yue TU ; Si-Yi LIU ; Wen-Jie LIU ; Liu-Yun-Xin PAN ; Ke-Jia WU
China Journal of Chinese Materia Medica 2025;50(9):2461-2471
This study explores the role and underlying molecular mechanisms of fucoidan sulfate(FPS) in regulating heme oxygenase-1(Hmox1)-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy(DCM) through in vivo and in vitro experiments and network pharmacology analysis. In vivo, a DCM rat model was established using a combination of "high-fat diet feeding + two low-dose streptozotocin(STZ) intraperitoneal injections". The rats were randomly divided into four groups: normal, model, FPS, and dapagliflozin(Dapa) groups. In vitro, a cellular model was created by inducing rat cardiomyocytes(H9c2 cells) with high glucose(HG), using zinc protoporphyrin(ZnPP), an Hmox1 inhibitor, as the positive control. An automatic biochemical analyzer was used to measure blood glucose(BG), serum aspartate aminotransferase(AST), serum lactate dehydrogenase(LDH), and serum creatine kinase-MB(CK-MB) levels. Echocardiography was used to assess rat cardiac function, including ejection fraction(EF) and fractional shortening(FS). Pathological staining was performed to observe myocardial morphology and fibrotic characteristics. DCFH-DA fluorescence probe was used to detect reactive oxygen species(ROS) levels in myocardial tissue. Specific assay kits were used to measure serum brain natriuretic peptide(BNP), myocardial Fe~(2+), and malondialdehyde(MDA) levels. Western blot(WB) was used to detect the expression levels of myosin heavy chain 7B(MYH7B), natriuretic peptide A(NPPA), collagens type Ⅰ(Col-Ⅰ), α-smooth muscle actin(α-SMA), ferritin heavy chain 1(FTH1), solute carrier family 7 member 11(SLC7A11), glutathione peroxidase 4(GPX4), 4-hydroxy-2-nonenal(4-HNE), and Hmox1. Immunohistochemistry(IHC) was used to examine Hmox1 protein expression patterns. FerroOrange and Highly Sensitive DCFH-DA fluorescence probes were used to detect intracellular Fe~(2+) and ROS levels. Transmission electron microscopy was used to observe changes in mitochondrial morphology. In network pharmacology, FPS targets were identified through the PubChem database and PharmMapper platform. DCM-related targets were integrated from OMIM, GeneCards, and DisGeNET databases, while ferroptosis-related targets were obtained from the FerrDb database. A protein-protein interaction(PPI) network was constructed for the intersection of these targets using STRING 11.0, and core targets were screened with Cytoscape 3.9.0. Molecular docking analysis was conducted using AutoDock and PyMOL 2.5. In vivo results showed that FPS significantly reduced AST, LDH, CK-MB, and BNP levels in DCM model rats, improved cardiac function, decreased the expression of myocardial injury proteins(MYH7B, NPPA, Col-Ⅰ, and α-SMA), alleviated myocardial hypertrophy and fibrosis, and reduced Fe~(2+), ROS, and MDA levels in myocardial tissue. Furthermore, FPS regulated the expression of ferroptosis-related markers(Hmox1, FTH1, SLC7A11, GPX4, and 4-HNE) to varying degrees. Network pharmacology results revealed 313 potential targets for FPS, 1 125 targets for DCM, and 14 common targets among FPS, DCM, and FerrDb. Hmox1 was identified as a key target, with FPS showing high docking activity with Hmox1. In vitro results demonstrated that FPS restored the expression levels of ferroptosis-related proteins, reduced intracellular Fe~(2+) and ROS levels, and alleviated mitochondrial structural damage in cardiomyocytes. In conclusion, FPS improves myocardial injury in DCM, with its underlying mechanism potentially involving the regulation of Hmox1 to inhibit ferroptosis. This study provides pharmacological evidence supporting the therapeutic potential of FPS for DCM-induced myocardial injury.
Animals
;
Ferroptosis/drug effects*
;
Rats
;
Diabetic Cardiomyopathies/physiopathology*
;
Male
;
Rats, Sprague-Dawley
;
Polysaccharides/pharmacology*
;
Heme Oxygenase-1/genetics*
;
Myocytes, Cardiac/metabolism*
;
Myocardium/pathology*
;
Humans
;
Cell Line
;
Heme Oxygenase (Decyclizing)
3.Research progress on Parkinson's disease treatment with traditional Chinese medicine via regulating Nrf2/HO-1 signaling pathway.
Le SHU ; Xing-Ke YAN ; Si-Rui MA ; Gui-Shun HE
China Journal of Chinese Materia Medica 2025;50(11):2982-2993
Parkinson's disease(PD) is a neurodegenerative disorder characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra and the accumulation of Lewy bodies. While conventional drugs like levodopa can improve early symptoms, their efficacy diminishes over time, and they may cause severe side effects. Traditional Chinese medicine(TCM), with its multi-target therapeutic approach, has shown unique advantages in PD treatment, particularly in slowing disease progression and improving clinical symptoms. The nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1) signaling pathway plays a critical role in cellular antioxidation, anti-inflammation, and cellular repair mechanisms, which are crucial for neuroprotection against PD. Studies indicate that TCM regulates the Nrf2/HO-1 pathway to enhance neuronal antioxidative capacity, inhibit neuroinflammation, promote dopaminergic neuron repair and survival, and slow pathological progression. This review explores the neuroprotective role of the Nrf2/HO-1 pathway in PD patients, including alleviating oxidative stress, suppressing neuroinflammation, promoting neuronal repair, and regulating iron metabolism and autophagy. It also discusses the mechanisms by which TCM active ingredients(flavonoids, alkaloids, terpenes, saponins, polyphenols, etc.), single herbs(Cistanche deserticola, Uraria crinite, and Melissa officinalis, etc.), and formulas(Bushen Jianpi Decoction, Didang Decoction, and Gancao Yangyin Decoction, etc.) modulate the Nrf2/HO-1 pathway in PD treatment, providing a theoretical basis for the clinical application and new drug development of TCM in PD prevention and treatment.
Humans
;
Parkinson Disease/genetics*
;
NF-E2-Related Factor 2/genetics*
;
Signal Transduction/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Heme Oxygenase-1/genetics*
;
Medicine, Chinese Traditional
4.Mechanism of puerarin improving myocardial contractile function in myocardial hypertrophy by inhibiting ferroptosis via Nrf2/ARE/HO-1 signaling pathway.
Yan-Dong LIU ; Wei QIAO ; Zhao-Hui PEI ; Guo-Liang SONG ; Wei JIN ; Wei-Bing ZHONG ; Qin-Qin DENG
China Journal of Chinese Materia Medica 2025;50(16):4679-4689
This study aims to explore the specific mechanism by which puerarin inhibits ferroptosis and improves the myocardial contractile function in myocardial hypertrophy through the nuclear factor erythroid 2-related factor 2(Nrf2)/antioxidant response element(ARE)/heme oxygenase-1(HO-1) signaling pathway. The hypertrophic cardiomyocyte model was established using phenylephrine, and H9c2 cells were divided into control group, model group, puerarin group, and puerarin+ML385 group. Cell viability and surface area were detected by cell counting kit-8(CCK-8) and immunofluorescence experiments. The mitochondrial membrane potential and Ca~(2+) concentration were measured. The ferroptosis-related indicators were detected by biochemical and fluorescence staining methods. The expression of proteins related to ferroptosis and the Nrf2/ARE/HO-1 signaling pathway was detected by Western blot. A myocardial hypertrophy model was established, and 40 rats were randomly divided into sham group, model group, puerarin group, and puerarin+Nrf2 inhibitor(ML385) group, with 10 rats in each group. Echocardiogram, hemodynamic parameters, and myocardial hypertrophy parameters were measured. Histopathological changes of myocardial tissues were observed by hematoxylin and eosin(HE) staining and Masson staining. Biochemical methods, enzyme-linked immunosorbent assay(ELISA), and fluorescence staining were used to detect inflammatory factors and ferroptosis-related indicators. Immunohistochemistry was used to detect the expression of proteins related to ferroptosis and the Nrf2/ARE/HO-1 signaling pathway. Cell experiments showed that puerarin intervention significantly enhanced the viability of hypertrophic cardiomyocytes, reduced their surface area, and restored mitochondrial membrane potential and Ca~(2+) homeostasis. Mechanism studies revealed that puerarin promoted Nrf2 nuclear translocation, upregulated the expression of HO-1, solute carrier family 7 member 11(SLC7A11), and glutathione peroxidase 4(GPX4), and decreased malondialdehyde(MDA), reactive oxygen species(ROS), and iron levels. These protective effects were reversed by ML385. In animal experiments, puerarin improved cardiac function in rats with myocardial hypertrophy, alleviated myocardial hypertrophy and fibrosis, inhibited inflammatory responses and ferroptosis, and promoted nuclear Nrf2 translocation and HO-1 expression. However, combined intervention with ML385 led to deterioration of hemodynamics and a rebound in ferroptosis marker levels. In conclusion, puerarin may inhibit cardiomyocyte ferroptosis through the Nrf2/ARE/HO-1 signaling pathway, thereby improving myocardial contractile function in myocardial hypertrophy.
Animals
;
NF-E2-Related Factor 2/genetics*
;
Rats
;
Ferroptosis/drug effects*
;
Signal Transduction/drug effects*
;
Isoflavones/pharmacology*
;
Male
;
Rats, Sprague-Dawley
;
Cardiomegaly/genetics*
;
Myocytes, Cardiac/metabolism*
;
Antioxidant Response Elements/drug effects*
;
Myocardial Contraction/drug effects*
;
Heme Oxygenase-1/genetics*
;
Cell Line
5.Mechanism analysis of ω-3 polyunsaturated fatty acids in alleviating oxidative stress and promoting osteogenic differentiation of MC3T3-E1 cells through activating Nrf2/NQO1 pathway.
Jiahui HUANG ; Long CHEN ; Chen XU ; Haojie YU ; Shishuai ZHOU ; Jianzhong GUAN
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(11):1459-1467
OBJECTIVE:
To explore the mechanism by which ω-3 polyunsaturated fatty acids (hereinafter referred to as "ω-3") exert antioxidant stress protection and promote osteogenic differentiation in MC3T3-E1 cells, and to reveal the relationship between ω-3 and the key antioxidant stress pathway involving nuclear factor E2-related factor 2 (Nrf2) and NAD (P) H quinone oxidoreductase 1 (NQO1) in MC3T3-E1 cells.
METHODS:
The optimal concentration of H 2O 2 (used to establish the oxidative stress model of MC3T3-E1 cells in vitro) and the optimal intervention concentrations of ω-3 were screened by cell counting kit 8. MC3T3-E1 cells were divided into blank control group, oxidative stress group (H 2O 2), low-dose ω-3 group (H 2O 2+low-dose ω-3), and high-dose ω-3 group (H 2O 2+high-dose ω-3). After osteoblastic differentiation for 7 or 14 days, the intracellular reactive oxygen species (ROS) level was measured by fluorescence staining and flow cytometry, and the mitochondrial morphological changes were observed by biological transmission electron microscope; the expression levels of Nrf2, NQO1, heme oxygenase 1 (HO-1), Mitofusin 1 (Mfn1), and Mfn2 were detected by Western blot to evaluate the cells' antioxidant stress capacity; the expression levels of Runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN) were detected by immunofluorescence staining and Western blot; osteogenic potential of MC3T3-E1 cells was evaluated by alkaline phosphatase (ALP) staining and alizarin red staining.
RESULTS:
Compared with the oxidative stress group, the content of ROS in the low and high dose ω-3 groups significantly decreased, and the protein expressions of Nrf2, NQO1, and HO-1 significantly increased ( P<0.05). At the same time, the mitochondrial morphology of MC3T3-E1 cells improved, and the expressions of mitochondrial morphology-related proteins Mfn1 and Mfn2 significantly increased ( P<0.05). ALP staining and alizarin red staining showed that the low-dose and high-dose ω-3 groups showed stronger osteogenic ability, and the expressions of osteogenesis-related proteins RUNX2 and OCN significantly increased ( P<0.05). And the above results showed a dose-dependence in the two ω-3 treatment groups ( P<0.05).
CONCLUSION
ω-3 can enhance the antioxidant capacity of MC3T3-E1 cells under oxidative stress conditions and upregulate their osteogenic activity, possibly through the Nrf2/NQO1 signaling pathway.
Oxidative Stress/drug effects*
;
NF-E2-Related Factor 2/metabolism*
;
NAD(P)H Dehydrogenase (Quinone)/metabolism*
;
Animals
;
Mice
;
Osteogenesis/drug effects*
;
Cell Differentiation/drug effects*
;
Fatty Acids, Omega-3/pharmacology*
;
Signal Transduction/drug effects*
;
Osteoblasts/drug effects*
;
Reactive Oxygen Species/metabolism*
;
Cell Line
;
Hydrogen Peroxide/pharmacology*
;
Core Binding Factor Alpha 1 Subunit/metabolism*
;
Antioxidants/pharmacology*
;
Heme Oxygenase-1/metabolism*
6.FGF19 alleviates inflammatory injury in vascular endothelial cells by activating the Nrf2/HO-1 signaling pathway.
Yan-Jun ZHANG ; Fei-Fei XIAO ; Xiao-Hua LI ; Shen-Hua TANG ; Yi SANG ; Chao-Yue LIU ; Jian-Chang LI
Chinese Journal of Contemporary Pediatrics 2025;27(5):601-608
OBJECTIVES:
To investigate the role and mechanism of fibroblast growth factor (FGF) 19 in inflammation-induced injury of vascular endothelial cells caused by high glucose (HG).
METHODS:
Human umbilical vein endothelial cells (HUVECs) were randomly divided into four groups: control, HG, FGF19, and HG+FGF19 (n=3 each). The effect of different concentrations of glucose and/or FGF19 on HUVEC viability was assessed using the CCK8 assay. Flow cytometry was utilized to examine the impact of FGF19 on HUVEC apoptosis. Levels of interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), total superoxide dismutase (T-SOD), and malondialdehyde (MDA) were measured by ELISA. Real-time quantitative PCR and Western blotting were used to determine the mRNA and protein expression levels of vascular endothelial growth factor (VEGF), nuclear factor erythroid 2 related factor 2 (Nrf2), and heme oxygenase-1 (HO-1). Cells were further divided into control, siRNA-Nrf2 (siNrf2), HG, HG+FGF19, HG+FGF19+negative control, and HG+FGF19+siNrf2 groups (n=3 each) to observe the effect of FGF19 on oxidative stress injury in HUVECs induced by high glucose after silencing the Nrf2 gene.
RESULTS:
Compared to the control group, the HG group exhibited increased apoptosis rate, increased IL-6, iNOS and MDA levels, and increased VEGF mRNA and protein expression, along with decreased T-SOD activity and decreased mRNA and protein expression of Nrf2 and HO-1 (P<0.05). Compared to the HG group, the HG+FGF19 group showed reduced apoptosis rate, decreased IL-6, iNOS and MDA levels, and decreased VEGF mRNA and protein expression, with increased T-SOD activity and increased Nrf2 and HO-1 mRNA and protein expression (P<0.05). Compared to the HG+FGF19+negative control group, the HG+FGF19+siNrf2 group had decreased T-SOD activity and increased MDA levels (P<0.05).
CONCLUSIONS
FGF19 can alleviate inflammation-induced injury in vascular endothelial cells caused by HG, potentially through the Nrf2/HO-1 signaling pathway.
Humans
;
NF-E2-Related Factor 2/genetics*
;
Signal Transduction
;
Human Umbilical Vein Endothelial Cells/drug effects*
;
Fibroblast Growth Factors/pharmacology*
;
Heme Oxygenase-1/physiology*
;
Apoptosis/drug effects*
;
Glucose
;
Inflammation
;
Interleukin-6/analysis*
;
Vascular Endothelial Growth Factor A/genetics*
;
Nitric Oxide Synthase Type II/analysis*
;
Cells, Cultured
7.Therapeutic effects of natural products on animal models of chronic obstructive pulmonary disease.
Xinru FEI ; Guixian YANG ; Junnan LIU ; Tong LIU ; Wei GAO ; Dongkai ZHAO
Journal of Central South University(Medical Sciences) 2025;50(6):1067-1079
Chronic obstructive pulmonary disease (COPD) currently lacks effective treatments to halt disease progression, making the search for preventive and therapeutic drugs a pressing issue. Natural products, with their accessibility, affordability, and low toxicity, offer promising avenues. Investigating the pharmacological effects and related signaling mechanisms of active components from natural products on COPD animal models induced by various triggers has become an important focus. In animal models induced by cigarette smoke, cigarette smoke combined with lipopolysaccharide (LPS), air pollution, elastase, bacterial or viral infections, the active compounds of natural products, such as flavonoids, terpenoids, and phenolics, can exert anti-inflammatory, antioxidant, mucus-regulating, and airway remodeling-inhibiting effects through key signaling pathways including nuclear factor-erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1), nuclear factor-kappa B (NF-κB), and mitogen-activated protein kinase (MAPK). These findings not only provide a theoretical basis for the clinical diagnosis and treatment of COPD but also point to new directions for future scientific research.
Pulmonary Disease, Chronic Obstructive/etiology*
;
Animals
;
Disease Models, Animal
;
Biological Products/pharmacology*
;
Humans
;
NF-kappa B/metabolism*
;
Flavonoids/pharmacology*
;
Signal Transduction/drug effects*
;
Anti-Inflammatory Agents/pharmacology*
;
Heme Oxygenase-1/metabolism*
;
Terpenes/pharmacology*
;
Antioxidants/pharmacology*
;
NF-E2-Related Factor 2/metabolism*
;
Smoke/adverse effects*
;
Phenols/therapeutic use*
8.Dexmedetomidine attenuates heat stress-induced oncosis in human skeletal muscle cells by activating the Nrf2/Ho-1 pathway.
Yang LIU ; Yiqing JIA ; Chengcheng LI ; Handing MAO ; Shuyuan LIU ; Yi SHAN
Journal of Southern Medical University 2025;45(3):603-613
OBJECTIVES:
To investigate the protective effects of dexmedetomidine (DEX) against heat stress (HS)-induced oncosis in human skeletal muscle cells (HSKMCs) and its underlying mechanisms.
METHODS:
A HSKMC model of HS-induced oncosis were established by 43 ℃ water bath for 4 h, and the effects of treatments with 30 μmol/L DEX, ML385 (a Nrf2 inhibitor) +DEX, si-Nrf2+HS, and si-Nrf2+DEX prior to modeling on cell viability was assessed using CCK-8 assay. Oncosis characteristics were evaluated using transmission electron microscopy and Annexin V-FITC/PI flow cytometry. The oxidative stress markers (GSH, GSH-Px, MDA, SOD and ROS), mitochondrial membrane potential, energy metabolism, and inflammatory cytokines (TNF-α, IL-6 and IL-1β) in the cells were quantified using standard kits, and the expressions of porimin, caspase-3 and Nrf2 pathway proteins were analyzed using Western blotting and qRT-PCR.
RESULTS:
HS induced typical oncotic features in HSKMCs including organelle swelling and cytoplasmic vacuolization. DEX pretreatment significantly attenuated these changes, reduced Annexin V+/PI+ cell ratio and cellular porimin expression, and lowered the levels of ROS and MDA while restoring GSH and SOD levels. DEX pretreatment also significantly increased the mitochondrial membrane potential and ATP level, upregulated the expressions of Nrf2, p-Nrf2, HO-1 and NQO1, and suppressed the expressions of TNF-α, IL-6 and IL-1β. The protective effects of DEX were obviously attenuated by interventions with ML385 or si-Nrf2.
CONCLUSIONS
DEX mitigates HS-induced HSKMC oncosis by activating the Nrf2/HO-1 pathway to relieve oxidative stress, mitochondrial dysfunction, and inflammatory responses.
Humans
;
Dexmedetomidine/pharmacology*
;
NF-E2-Related Factor 2/metabolism*
;
Oxidative Stress/drug effects*
;
Heat-Shock Response/drug effects*
;
Signal Transduction/drug effects*
;
Membrane Potential, Mitochondrial
;
Muscle, Skeletal/cytology*
;
Heme Oxygenase-1/metabolism*
;
Apoptosis/drug effects*
9.Low-intensity pulsed ultrasound and oridonin synergistically induce ferroptosis of pancreatic cancer cells by activating PIEZO1 via the Nrf2/HO-1/GPX4 pathway.
Bihang SUN ; Yujun GUO ; Yulin QI ; Dan YAO ; Wenzhi CHEN ; Nianzhi CHEN
Journal of Southern Medical University 2025;45(10):2160-2170
OBJECTIVES:
To evaluate the inhibitory effect of oridonin against proliferation of pancreatic cancer cells and the mechanism underlying the synergistic effect of low-intensity pulsed ultrasound (LIPUS).
METHODS:
PANC-1 cells treated with different concentrations of oridonin were examined for changes in cell proliferation using CCK-8 assay and in MDA, GSH and ATP levels using flow cytometry. The protein expressions of GPX4, Nrf2 and HO-1 in the treated cells were detected with Western blotting. The effect of Fer-1, a ferroptosis inhibitor, on proliferation of oridonin-treated cells were assessed, and the effects of oridonin combined with LIPUS on PIEZO1 protein expression was evalauted using Western blotting. A C57BL/6J mouse model bearing pancreatic cancer cell xenograft was established and treated with oridonin, LIPUS, or both, and the histological changes in the tumor tissues and tumor cell proliferation were examined with HE staining and immunohistochemistry for Ki67; the changes in GPX4 expression in the tumor tissues were detected using Western blotting and immunofluorescence staining.
RESULTS:
In PANC-1 cells, oridonin treatment significantly inhibited cell proliferation, increased intracellular Fe2+, ROS, and MDA levels, and decreased GSH and ATP levels. Oridonin also resulted in lowered GPX4 and increased HO-1 and Nrf2 protein expression levels in the cells. The combined treatment with LIPUS signficiantly enhanced the inhibitory effect of oridonin on PANC-1 cell viability in vitro and on xenograft growth in the mouse models, resulting also in more obvious reduction of the intensity of Ki67 staining and GPX4 protein expression and more pronounced increase of PIEZO1 protein expression in the tumor tissues in the mouse models.
CONCLUSIONS
LIPUS enhances the effect of oridonin to promote ferroptosis of pancreatic cancer cells by activating PIEZO1 through the Nrf2/HO-1/GPX4 pathway.
Ferroptosis/drug effects*
;
Animals
;
Pancreatic Neoplasms/metabolism*
;
NF-E2-Related Factor 2/metabolism*
;
Humans
;
Cell Line, Tumor
;
Mice
;
Heme Oxygenase-1/metabolism*
;
Diterpenes, Kaurane/pharmacology*
;
Cell Proliferation/drug effects*
;
Mice, Inbred C57BL
;
Phospholipid Hydroperoxide Glutathione Peroxidase
;
Ion Channels/metabolism*
;
Ultrasonic Waves
;
Signal Transduction
10.Fexolone inhibits neuronal ferroptosis through the Nrf2/HO-1/GPX4 pathway to alleviates sepsis-associated brain injury.
Rao SUN ; Jinyao ZHOU ; Yang JIAO ; Kaixuan NIU ; Cheng YUAN ; Ximing DENG
Chinese Critical Care Medicine 2025;37(5):452-457
OBJECTIVE:
To observe the protective effect of Fisetin on sepsis-associated brain injury and explore its possible mechanism from the perspective of ferroptosis.
METHODS:
Sprague-Dawley (SD) rats (6-8-week-old male) were randomly divided into three groups: sham operation group (Sham group), colonic ligation and puncture (CLP) induced sepsis model group (CLP group) and Fisetin preprocessing group (CLP+Fisetin group), with 18 rats in each group (12 for observing survival rate and 6 for indicator testing). The CLP+Fisetin group was given Fisetin solution 50 mg×kg-1×d-1 by gavage continuously for 5 days before CLP, with dimethyl sulfoxide (DMSO) as the solute, while Sham group and CLP group were given the same dose of DMSO. The model was established at 2 hours after the last gavage. The general condition of each group of rats were observed, and the 10-day mortality were record. The behavioral testing (new object recognition experiment, elevated cross maze experiment) were performed after 7 days of modeling. After 24 hours of modeling, nerve reflex scoring was performed, and then the rats were euthanized and brain tissue was collected. The pathological changes of brain tissue were observed under a microscope by hematoxylin-eosin (HE) staining, the deposition of iron ion in brain tissue was observed by Prussian blue staining. The content of iron in brain tissue was determined by tissue iron kit, and the content of malondialdehyde (MDA) in brain tissue was determined by colorimetry. The expressions of tumor necrosis factor-α (TNF-α), neuron damage marker S100β, nuclear factor E2-related factor 2 (Nrf2), heme oxygenases-1 (HO-1) and glutathione peroxidase 4 (GPX4) were detected by Western blotting.
RESULTS:
On day 10 post-operation, 12, 3, and 7 animals survived in the Sham group, CLP group, and CLP+Fisetin group, respectively. Compared with the Sham group, rats in the CLP group showed significantly decreased nerve reflex score, new object discrimination index and open arm dwell time. HE staining showed arranged disorderly of neuronal cells, cytoplasm deep staining, nuclear condensation, unclear structures, neuron loss, and significant inflammation in the hippocampus in the hippocampus. Prussian blue staining showed iron ion deposition in the brain tissue. The contents of iron and MDA in brain tissue were elevated, and the expressions of TNF-α and S100β were up-regulated, while the expressions of Nrf2, HO-1, and GPX4 were down-regulated. Compared with the CLP group, the CLP+Fisetin group showed significantly increased neurological reflex score (7.33±1.15 vs. 4.67±1.53), improved new object discrimination index (0.44±0.02 vs. 0.32±0.04), and longer open arm dwell time (minutes: 78.33±9.29 vs. 41.15±9.64). Neuronal cells in the hippocampus were more organized, with less cytoplasmic staining, nuclear condensation, reduced neuronal loss, and fewer inflammatory cells. Iron ion deposition was reduced, and the contents of iron ions and MDA in brain tissue were decreased [iron ion (μg/g): 151.27±14.90 vs. 224.69±17.64, MDA (μmol/g): 470.0±44.3 vs. 709.3±65.4]. The expressions of TNF-α and S100β were significantly decreased (TNF-α/GAPDH: 0.651±0.060 vs. 0.896±0.022, S100β/GAPDH: 0.685±0.032 vs. 0.902±0.014), while the expressions of Nrf2, HO-1, and GPX4 were significantly increased (Nrf2/GAPDH: 0.708±0.108 vs. 0.316±0.112, HO-1/GAPDH: 0.694±0.022 vs. 0.538±0.024, GPX4/GAPDH: 0.620±0.170 vs. 0.317±0.039). All differences were statistically significant (all P < 0.05).
CONCLUSION
Fisetin pretreatment can inhibit ferroptosis and reduce sepsis-associated brain injury by Nrf2/HO-1/GPX4 pathway.
Animals
;
Ferroptosis/drug effects*
;
Rats, Sprague-Dawley
;
NF-E2-Related Factor 2/metabolism*
;
Sepsis/complications*
;
Male
;
Rats
;
Phospholipid Hydroperoxide Glutathione Peroxidase
;
Neurons/drug effects*
;
Signal Transduction
;
Brain Injuries/metabolism*
;
Flavonols
;
Flavonoids/pharmacology*
;
Heme Oxygenase-1/metabolism*
;
Heme Oxygenase (Decyclizing)

Result Analysis
Print
Save
E-mail