1.Network pharmacology and animal experiments reveal molecular mechanisms of Cordyceps sinensis in ameliorating heart aging and injury in mice by regulating Nrf2/HO-1/NF-κB pathway.
Si-Yi LIU ; Yue TU ; Wei-Ming HE ; Wen-Jie LIU ; Kai-Zhi WEN ; Cheng-Juan LI ; Chao HAN ; Xin-Yu LIANG
China Journal of Chinese Materia Medica 2025;50(4):1063-1074
This study aims to explore the effects and mechanisms of the traditional Chinese medicine Cordyceps sinensis(CS) in ameliorating heart aging and injury in mice based on animal experiments and network pharmacology. A mouse model of heart aging was established by continuously subcutaneous injection of D-galactose(D-gal). Thirty mice were randomly assigned into a normal group, a model group, a low-dose CS(CS-L) group, a high-dose CS(CS-H) group, and a vitamin E(VE) group. Mice in these groups were administrated with normal saline, different doses of CS suspension, or VE suspension via gavage daily. After 60 days of treatment with D-gal and various drugs, all mice were euthanized, and blood and heart tissue samples were collected for determination of the indicators related to heart aging and injury in mice. Experimental results showed that both high and low doses of CS and VE ameliorated the aging phenotype, improved the heart index and myocardial enzyme spectrum, restored the expression levels of proteins associated with cell cycle arrest and senescence-associated secretory phenotypes(SASP), and alleviated the fibrosis and histopathological changes of the heart tissue in model mice. From the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP),259 active ingredients of CS were retrieved. From Gene Cards and OMIM, 2 568 targets related to heart aging were identified, and 133common targets shared by CS and heart aging were obtained. The Gene Ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes( KEGG) pathway enrichment revealed that the pathways related to heart aging involved oxidative stress,apoptosis, inflammation-related signaling pathways, etc. The animal experiment results showed that both high and low doses of CS and VE ameliorated oxidative stress and apoptosis in the heart tissue to varying degrees in model mice. Additionally, CS-H and VE activated the nuclear factor E2-related factor 2(Nrf2)/heme oxygenase-1(HO-1) pathway and inhibited the expression of key proteins in the nuclear factor-κB(NF-κB) pathway in the heart tissue of model mice. In conclusion, this study demonstrated based on network pharmacology and animal experiments that CS may alleviate heart aging and injury in aging mice by reducing oxidative stress,apoptosis, and inflammation in the heart via the Nrf2/HO-1/NF-κB pathway.
Animals
;
Cordyceps/chemistry*
;
Mice
;
NF-E2-Related Factor 2/genetics*
;
NF-kappa B/genetics*
;
Aging/genetics*
;
Male
;
Signal Transduction/drug effects*
;
Network Pharmacology
;
Drugs, Chinese Herbal/pharmacology*
;
Heme Oxygenase-1/genetics*
;
Heart/drug effects*
;
Humans
;
Myocardium/metabolism*
;
Membrane Proteins/genetics*
2.Ameliorative effects of Lycii Fructus-Chrysanthemi Flos at different ratios on retinal damage in mice.
Bing LI ; Sheng GUO ; Yue ZHU ; Xue-Sen WANG ; Dan-Dan WEI ; Hong-Jie KANG ; Wen-Hua ZHANG ; Jin-Ao DUAN
China Journal of Chinese Materia Medica 2025;50(3):732-740
This study aimed to compare the ameliorative effects of Lycii Fructus and Chrysanthemi Flos at different ratios on retinal damage in mice and to elucidate the underlying mechanisms. A retinal injury model was established by intraperitoneal injection of sodium iodate(NaIO_3) solution. The mice were divided into the following groups: blank group, model group, positive drug(AREDS 2) group, low-and high-dose groups of Lycii Fructus and Chrysanthemi Flos at 1∶1, low-and high-dose groups at 3∶1, and low-and high-dose groups at 1∶3. Administration was carried out 15 days after modeling. The visual acuity of the mice was assessed using the black-and-white box test. The fundus was observed using an optical coherence tomography device, and retinal thickness was measured. HE staining was used to observe the morphology and pathological changes of the retina. The levels of oxidative factors in serum and ocular tissues were measured using assay kits. The levels of inflammatory factors in serum and ocular tissues were detected by enzyme-linked immunosorbent assay(ELISA), and the expression of Nrf2, HO-1, and NF-κB proteins in ocular tissues was analyzed by Western blot. The results showed that after administration of Lycii Fructus and Chrysanthemi Flos at different ratios, the model group showed improved retinal thinning and disordered arrangement of retinal layers, elevated content of SOD and GSH in the serum and ocular tissues, and reduced levels of MDA, TNF-α, IL-1β, and IL-6. Lycii Fructus and Chrysanthemi Flos at 1∶1 and 1∶3 showed better improvement effects. The combination significantly upregulated the expression levels of Nrf2 and HO-1 and downregulated the expression of NF-κB p65. These results indicate that Lycii Fructus and Chrysanthemi Flos at different ratios can improve retinal damage, reduce oxidative stress, and alleviate inflammation in both the body and ocular tissues of mice. The mechanism may be related to the regulation of the Nrf2/HO-1 and NF-κB signaling pathways in ocular tissues. These findings provide a theoretical basis for the clinical application of Lycii Fructus and Chrysanthemi Flos in the treatment of dry age-related macular degeneration.
Animals
;
Mice
;
Retina/injuries*
;
Male
;
Lycium/chemistry*
;
Drugs, Chinese Herbal/administration & dosage*
;
Chrysanthemum/chemistry*
;
NF-kappa B/genetics*
;
Humans
;
Retinal Diseases/metabolism*
;
NF-E2-Related Factor 2/metabolism*
;
Oxidative Stress/drug effects*
;
Flowers/chemistry*
;
Heme Oxygenase-1/genetics*
3.Chinese agarwood petroleum ether extract suppressed gastric cancer progression via up-regulation of DNA damage-induced G0/G1 phase arrest and HO-1-mediated ferroptosis.
Lishan OUYANG ; Xuejiao WEI ; Fei WANG ; Huiming HUANG ; Xinyu QIU ; Zhuguo WANG ; Peng TAN ; Yufeng GAO ; Ruoxin ZHANG ; Jun LI ; Zhongdong HU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(10):1210-1220
Gastric cancer (GC) is characterized by high morbidity and mortality rates. Chinese agarwood comprises the resin-containing wood of Aquilaria sinensis (Lour.) Gilg., traditionally utilized for treating asthma, cardiac ischemia, and tumors. However, comprehensive research regarding its anti-GC effects and underlying mechanisms remains limited. In this study, Chinese agarwood petroleum ether extract (CAPEE) demonstrated potent cytotoxicity against human GC cells, with half maximal inhibitory concentration (IC50) values for AGS, HGC27, and MGC803 cells of 2.89, 2.46, and 2.37 μg·mL-1, respectively, at 48 h. CAPEE significantly induced apoptosis in these GC cells, with B-cell lymphoma-2 (BCL-2) associated X protein (BAX)/BCL-2 antagonist killer 1 (BAK) likely mediating CAPEE-induced apoptosis. Furthermore, CAPEE induced G0/G1 phase cell cycle arrest in human GC cells via activation of the deoxyribonucleic acid (DNA) damage-p21-cyclin D1/cyclin-dependent kinase 4 (CDK4) signaling axis, and increased Fe2+, lipid peroxides and reactive oxygen species (ROS) levels, thereby inducing ferroptosis. Ribonucleic acid (RNA) sequencing, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blotting analyses revealed CAPEE-mediated upregulation of heme oxygenase-1 (HO-1) in human GC cells. RNA interference studies demonstrated that HO-1 knockdown reduced CAPEE sensitivity and inhibited CAPEE-induced ferroptosis in human GC cells. Additionally, CAPEE administration exhibited robust in vivo anti-GC activity without significant toxicity in nude mice while inhibiting tumor cell growth and promoting apoptosis in tumor tissues. These findings indicate that CAPEE suppresses human GC cell growth through upregulation of the DNA damage-p21-cyclin D1/CDK4 signaling axis and HO-1-mediated ferroptosis, suggesting its potential as a candidate drug for GC treatment.
Animals
;
Humans
;
Mice
;
Antineoplastic Agents, Phytogenic
;
Apoptosis/drug effects*
;
Cell Line, Tumor
;
Cyclin D1/genetics*
;
Cyclin-Dependent Kinase 4/genetics*
;
DNA Damage/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Ferroptosis/drug effects*
;
G1 Phase Cell Cycle Checkpoints/drug effects*
;
Heme Oxygenase-1/genetics*
;
Mice, Inbred BALB C
;
Mice, Nude
;
Plant Extracts/pharmacology*
;
Stomach Neoplasms/physiopathology*
;
Thymelaeaceae/chemistry*
;
Up-Regulation/drug effects*
4.Bioinformatics and animal experiments reveal mechanism of Linggui Zhugan Decoction in ameliorating chronic heart failure after myocardial infarction via HIF-1α/HO-1 signaling pathway.
Han REN ; Shu-Shu WANG ; Wan-Zhu ZHAO ; Shao-Hua XU ; Ke-Dong WEI ; Wan-Wan WU ; Sheng-Yi HUANG ; Rui CAI ; Yuan-Hong ZHANG ; Jin-Ling HUANG
China Journal of Chinese Materia Medica 2024;49(23):6407-6416
This study aims to investigate the effect of Linggui Zhugan Decoction(LGZGD) on autophagy in the mouse model of chronic heart failure(CHF) induced by myocardial infarction(MI), as well as the regulatory effect of LGZGD on the hypoxia-inducible factor-1α(HIF-1α)/heme oxygenase-1(HO-1) signaling pathway, based on bioinformatics and animal experiments. The active ingredients and corresponding targets of LGZGD were retrieved from the Traditional Chinese Medicine Systems Pharmacology and Analysis Database, and GEO, GeneCards, and DisGeNET were searched for the disease targets. Cytoscape was used to establish a "drug-component-target" network. The protein-protein interaction(PPI) network analysis was performed on STRING. R language was used for Gene Ontology(GO) and Kyoto Encycloperfia of Genes and Genomes(KEGG) enrichment analyses. Molecular docking was adopted to validate the core targets. The mouse model of MI-induced CHF was established by surgical ligation of the left anterior descending coronary artery. The modeled mice were assigned into the sham, model, low-, medium-, and high-dose(2.34, 4.68, and 9.36 g·kg~(-1), respectively) LGZGD, and captopril(3.25 mg·kg~(-1)) groups. After continuous administration for 6 weeks, a Doppler ultrasound imaging system was used to examine the heart function indicators: left ventricular ejection fraction(LVEF), left ventricular fractional shortening(LVFS), left ventricular end-systolic dimension(LVIDs), and left ventricular end-diastolic dimension(LVIDd). The myocardial tissue was stained with hematoxylin-eosin for the observation of morphological changes. The mRNA levels of microtubule-associated protein 1 light chain 3 beta(LC3B), Beclin1, p62, HIF-1α, and HO-1 in the myocardial tissue were determined by RT-qPCR. The protein levels of LC3B, beclin1, p62, autophagy-related protein 5(ATG5), HIF-1α, and HO-1 were determined by Western blot. The results showed that 103 active components of LGZGD, corresponding to 224 targets, were obtained. A total of 3 485 and 6 165 targets related to MI and CHF, respectively, were retrieved. The GSE16499 dataset obtained 3 263 differentially expressed genes. There were 31 common targets. The top 3 core active components were quercetin, naringenin, and 1-methoxyphaseollidin. The topology analysis results showed that the core targets were MAPK3, HMOX1(HO-1), MYC, ADRB2, PPARD, and HIF1A(HIF-1α). The molecular docking results showed strong binding between the core targets and the main active components of LGZGD. LGZGD significantly improved the heart function and alleviated the pathological changes in the myocardial tissue of mice. Western blot and RT-qPCR results showed that the HIF-1α/HO-1 signaling pathway and autophagy were activated in the model group. LGZGD up-regulated the levels of LC3B, Beclin1, ATG5, HIF-1α, and HO-1 while down-regulating the mRNA and protein levels of p62. In summary, LGZGD can enhance autophagy and improve the heart function in the mouse model of CHF after MI by upregulating the HIF-1α/HO-1 signaling pathway.
Animals
;
Drugs, Chinese Herbal/chemistry*
;
Myocardial Infarction/drug therapy*
;
Heart Failure/physiopathology*
;
Mice
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Signal Transduction/drug effects*
;
Male
;
Computational Biology
;
Heme Oxygenase-1/genetics*
;
Molecular Docking Simulation
;
Protein Interaction Maps/drug effects*
;
Mice, Inbred C57BL
;
Humans
;
Chronic Disease
;
Disease Models, Animal
5.A herbal pair of Scutellaria barbata D. Don and Scleromitrion diffusum (Willd.) R.J. Wang induced ferroptosis in ovarian cancer A2780 cells via inducing heme catabolism and ferritinophagy.
Zhen WANG ; Min LIU ; Guang-Xing LI ; Liu ZHANG ; Kai-Yue DING ; Si-Qi LI ; Bing-Qing GAO ; Peng CHEN ; Hyok-Chol CHOE ; Lun-Yue XIA ; Yu-Tong YANG ; Yi LIU ; Xue SUI ; Jun-Nan MA ; Lin ZHANG
Journal of Integrative Medicine 2024;22(6):665-682
OBJECTIVE:
Despite the combination of Scutellaria barbata D. Don and Scleromitrion diffusum (Willd.) R.J. Wang (SB-SD) being a recognized Chinese medicinal herbal pair that is commonly used in the treatment of ovarian cancer, there is a poor understanding of their pharmacological mechanisms. This study examines the antitumor properties and potential mechanisms of SB-SD on human ovarian cancer A2780 cells through a multi-omics approach, establishing a pharmacological basis for clinical utilization.
METHODS:
A range of mass ratios and reagents were used in the hot reflux extraction of SB-SD. The inhibitory effect of the SB-SD extracts on A2780 cell proliferation was assessed using the cell-counting kit 8 assay. A zebrafish tumor implantation model was used to evaluate the effects of SB-SD extracts on tumor growth and metastasis in vivo. Transcriptomics and proteomics were used to investigate alterations in biological pathways in A2780 cells after treatment with different concentrations of SB-SD extract. Cell cycle, cell apoptosis, intracellular free iron concentration, intracellular reactive oxygen species (ROS) concentration, malondialdehyde (MDA), and mitochondrial membrane potential were measured. Real-time quantitative reverse transcription polymerase chain reaction and Western blotting were utilized to investigate the effects of heme catabolism and ferritinophagy on ferroptosis induced by SB-SD extract in A2780 cells.
RESULTS:
The 70% ethanol extract of SB-SD (a mass ratio of 4:1) inhibited A2780 cell proliferation significantly with a half maximal inhibitory concentration of 660 μg/mL in a concentration- and time-dependent manner. Moreover, it effectively suppressed tumor growth and metastasis in a zebrafish tumor implantation model. SB-SD extract induced the accumulation of free iron, ROS, MDA, and mitochondrial damage in A2780 cells. The mechanisms might involve the upregulated expression of ferritinophagy-related genes microtubule-associated protein 1 light chain 3, autophagy-related gene 5, and nuclear receptor coactivator 4.
CONCLUSION
SB-SD extract effectively inhibited the development of ovarian cancer both in vitro and in vivo. Its mechanism of action involved inducing ferroptosis by facilitating heme catabolism and ferritinophagy. This herbal pair holds promise as a potential therapeutic option for ovarian cancer treatment and may be utilized in combination with routine treatment to improve the treatment outcomes of ovarian cancer patients. Please cite this article as: Wang Z, Liu M, Li GX, Zhang L, Ding KY, Li SQ, Gao BQ, Chen P, Choe HC, Xia LY, Yang YT, Liu Y, Sui X, Ma JN, Zhang L. A herbal pair of Scutellaria barbata D. Don and Scleromitrion diffusum (Willd.) R.J. Wang induced ferroptosis in ovarian cancer A2780 cells via inducing heme catabolism and ferritinophagy. J Integr Med. 2024; 22(6): 666-683.
Ferroptosis/drug effects*
;
Female
;
Humans
;
Animals
;
Scutellaria/chemistry*
;
Ovarian Neoplasms/genetics*
;
Zebrafish
;
Cell Line, Tumor
;
Ferritins/genetics*
;
Plant Extracts/pharmacology*
;
Heme/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
;
Cell Proliferation/drug effects*
;
Reactive Oxygen Species/metabolism*
;
Antineoplastic Agents, Phytogenic/pharmacology*
;
Autophagy/drug effects*
;
Apoptosis/drug effects*
6.Synthesis and cytotoxicity evaluation of 3-amino-2-hydroxypropoxygenistein derivatives.
Xiao-Ting GENG ; Jing-Jing TANG ; Kun-Peng CHENG ; Yuan-Tao FU ; Rong HU ; Jin-Rong LU
Chinese Journal of Natural Medicines (English Ed.) 2017;15(11):871-880
Soy isoflavones exhibit various biological activities, such as antioxidant, anti-tumor, anti-inflammatory, and cardiovascular protective effects. The present study was designed to investigate the effects of sixteen synthesized 3-amino-2-hydroxypropoxy genistein derivatives on cell proliferation and activation of Nrf2 (Nuclear factor erythroid 2-related factor 2)/ARE (antioxidant response elements) pathway in human cancer cell lines. Most of the tested compounds exerted greater cytotoxic activity than genistein, as measured by MTT assay. Moreover, compound 8c showed the highest ARE-luciferase reporter activity among the test compounds. It strongly promoted Nrf2 nuclear translocation and up-regulated the expression of total Nrf2 and downstream targets NQO-1 and HO-1 at protein level. The present study may provide a basis for the application of isoflavone derivatives as Nrf2/ARE pathway inducers for cancer therapy and cancer prevention.
Antioxidant Response Elements
;
Cell Line, Tumor
;
Cell Proliferation
;
Genistein
;
chemical synthesis
;
pharmacology
;
therapeutic use
;
Heme Oxygenase-1
;
metabolism
;
Humans
;
Isoflavones
;
NF-E2-Related Factor 2
;
metabolism
;
Neoplasms
;
drug therapy
;
metabolism
;
Signal Transduction
;
Soybeans
;
chemistry
;
Up-Regulation
7.Anti-neuro-inflammatory effects of Nardostachys chinensis in lipopolysaccharide-and lipoteichoic acid-stimulated microglial cells.
Sun Young PARK ; Young Hun KIM ; Geuntae PARK
Chinese Journal of Natural Medicines (English Ed.) 2016;14(5):343-353
Excessive microglial cell activation is related to the progression of chronic neuro-inflammatory disorders. Heme oxygenase-1 (HO-1) expression mediated by the NFE2-related factor (Nrf-2) pathway is a key regulator of neuro-inflammation. Nardostachys chinensis is used as an anti-malarial, anti-nociceptive, and neurotrophic treatment in traditional Asian medicines. In the present study, we examined the effects of an ethyl acetate extract of N. chinensis (EN) on the anti-neuro-inflammatory effects mediated by HO-1 up-regulation in Salmonella lipopolysaccharide (LPS)- or Staphylococcus aureus lipoteichoic acid (LTA)-stimulated BV2 microglial cells. Our results indicated that EN suppressed pro-inflammatory cytokine production and induced HO-1 transcription and translation through Nrf-2/antioxidant response element (ARE) signaling. EN markedly inhibited LPS- and LTA-induced activation of nuclear factor-kappa B (NF-κB) as well as phosphorylation of mitogen-activated protein kinases (MAPKs) and signal transducer and activator of transcription (STAT). Furthermore, EN protected hippocampal HT22 cells from indirect neuronal toxicity mediated by LPS- and LTA-treated microglial cells. These results suggested that EN impairs LPS- and LTA-induced neuro-inflammatory responses in microglial cells and confers protection against indirect neuronal damage to HT22 cells. In conclusion, our findings indicate that EN could be used as a natural anti-neuro-inflammatory and neuroprotective agent.
Anti-Inflammatory Agents
;
pharmacology
;
Cell Line
;
Heme Oxygenase-1
;
genetics
;
immunology
;
Humans
;
Lipopolysaccharides
;
adverse effects
;
Microglia
;
cytology
;
drug effects
;
immunology
;
Mitogen-Activated Protein Kinases
;
genetics
;
immunology
;
NF-kappa B
;
genetics
;
immunology
;
Nardostachys
;
chemistry
;
Neuroprotective Agents
;
pharmacology
;
Plant Extracts
;
pharmacology
;
Teichoic Acids
;
adverse effects
8.Protective effect of emodin against airway inflammation in the ovalbumin-induced mouse model.
Tan WANG ; Xiang-Gen ZHONG ; Yu-Hang LI ; Xu JIA ; Shu-Jing ZHANG ; Yu-Shan GAO ; Miao LIU ; Ruo-Han WU
Chinese journal of integrative medicine 2015;21(6):431-437
OBJECTIVETo investigate whether emodin exerts protective effects on mouse with allergic asthma.
METHODSA mouse model of allergic airway inflflammation was employed. The C57BL/6 mice sensitized and challenged with ovalbumin (OVA) were intraperitoneally administered 10 or 20 mg/kg emodin for 3 days during OVA challenge. Animals were sacrificed 48 h after the last challenge. Inflammatory cell count in the bronchoalveolar lavage fluid (BALF) was measured. The levels of interleukin (IL)-4, IL-5, IL-13 and eotaxin in BALF and level of immunoglobulin E (IgE) in serum were measured with enzyme-linked immuno sorbent assay kits. The mRNA expressions of IL-4, IL-5, heme oxygenase (HO)-1 and matrix metalloproteinase-9 (MMP-9) were determined by real-time quantitative polymerase chain reaction.
RESULTSEmodin induced significant suppression of the number of OVA-induced total inflammatory cells in BALF. Treatment with emodin led to significant decreases in the levels of IL-4, IL-5, IL-13 and eotaxin in BALF and total IgE level in serum. Histological examination of lung tissue revealed marked attenuation of allergen-induced lung eosinophilic inflammation. Additionally, emodin suppressed IL-4, IL-5 and MMP-9 mRNA expressions and induced HO-1 mRNA expression.
CONCLUSIONEmodin exhibits anti-inflammatory activity in the airway inflammation mouse model, supporting its therapeutic potential for the treatment of allergic bronchial asthma.
Animals ; Bronchoalveolar Lavage Fluid ; cytology ; Chemokines ; metabolism ; Disease Models, Animal ; Emodin ; chemistry ; pharmacology ; therapeutic use ; Female ; Gene Expression Regulation ; drug effects ; Heme Oxygenase-1 ; genetics ; metabolism ; Immunoglobulin E ; blood ; Interleukins ; genetics ; metabolism ; Leukocytes ; drug effects ; metabolism ; Lung ; drug effects ; metabolism ; pathology ; Matrix Metalloproteinase 9 ; genetics ; metabolism ; Mice, Inbred C57BL ; Ovalbumin ; Pneumonia ; blood ; drug therapy ; pathology ; Protective Agents ; pharmacology ; therapeutic use ; RNA, Messenger ; genetics ; metabolism
9.Protective effect and action mechanism of petroleum ether extracts from Saussurea involucrate on brain tissues of hypoxia rats.
Hui-Ping MA ; Juan YAO ; Jin-Hua WU ; Rong-Min GAO ; Peng-Cheng FAN ; Lin-Lin JING ; Zheng-Ping JIA
China Journal of Chinese Materia Medica 2014;39(14):2710-2715
OBJECTIVETo investigate the protective effect and action mechanism of petroleum ether extracts from Saussurea involucrate on brain tissues of hypoxia rats under constant pressure and closed conditions.
METHODThe PESI dosage-dependent experiment for hypoxia rats was conducted under constant pressure and closed conditions by intraperitoneally injecting 125, 250, 500 mg x kg(-1) to finalize that the optimum dosage is the high dose of PESI. Afterwards, 90 Wistar rats were randomly divided into the hypoxic model group, the acetazolamide 250 mg x kg(-1) group and the PESI high dose group. Each group was further divided into three subgroups according to different hypoxia times, with 10 rats in each subgroup. Under the same hypoxia and administration conditions, the rats were sacrificed after 0, 3, 6 h respectively. Their brain samples were collected for common pathological observation and immunohistochemical staining of HIF-1alpha. Real-time RT-PCR was used to detect HIF-1alpha, EPO, HO-1 and Caspase-3 gene expressions. And the Western blot assay was adopted to detect HIF-1alpha protein expression.
RESULTThe brain tissues of the hypoxia model group were severely damaged with the increase in the hypoxia time. The acetazolamide group and the PESI high does group were damaged in a much lower degree. According to the gene expression and the Western blot assay, high dose of PESI could inhibit HIF-1alpha expression. According to the pure gene expression test, high dose of PESI could increase EPO and HO-1 mRNA expressions, but inhibit Caspase-3 mRNA expression.
CONCLUSIONPESI's protective mechanism for brain tissues of hypoxia rats under constant pressure and closed conditions may be related to its effects in inhibiting HIF-1alpha expression, increasing EPO expression and resisting cell apoptosis.
Alkanes ; chemistry ; Animals ; Brain ; cytology ; drug effects ; metabolism ; Caspase 3 ; genetics ; Cell Hypoxia ; drug effects ; Cytoprotection ; drug effects ; Dose-Response Relationship, Drug ; Drugs, Chinese Herbal ; pharmacology ; Erythropoietin ; genetics ; Gene Expression Regulation, Enzymologic ; drug effects ; Heme Oxygenase-1 ; genetics ; Hypoxia-Inducible Factor 1, alpha Subunit ; genetics ; metabolism ; Male ; Rats ; Rats, Wistar ; Saussurea ; chemistry
10.Protection of Grateloupia filicina polysaccharide against hepatotoxicity induced by Dioscorea bulbifera L.
Yi-Bo MA ; Li-Li JI ; Shun-Chun WANG ; Song-Shan SHI ; Zheng-Tao WANG
Acta Pharmaceutica Sinica 2013;48(8):1253-1258
The present study was designed to observe the protection of Grateloupia filicina polysaccharide (GFP) against hepatotoxicity induced by Dioscorea bulbifera L in mice and its underlying mechanism. GFP was intragastrically (ig) given to mice at various doses. After 6 days, the mice were treated with ethyl acetate extract of Dioscorea bulbifera L (EF, ig). Serum levels of alanine/aspartate aminotransferase (ALT/AST), alkaline phosphatase (ALP), total bilirubin (TB) were measured, and liver histological evaluation was conducted. Furthermore, reductions of liver glutathione (GSH) amount and glutamate cysteine ligase (GCL) activity were tested. The expressions of GCL-c, GCL-m, and HO-1 (heme oxygenase-1) in liver were observed by Western-blot. The results showed that GFP (600 mg x kg(-1)) decreased EF-induced the increase of serum ALT, AST and TB, and GFP (400, 600 mg x kg(-1)) inhibited EF-induced the increase of serum ALP. Liver histological evaluation showed that the liver injury induced by EF was relieved after treated with GFP. GFP further increased liver GSH amount and reversed EF-induced the decrease of GCL activity. The Western-blot result showed that GFP augmented EF-induced the increase of HO-1, and reversed EF-induced the decrease of GCL-c. In conclusion, GFP can act against the oxidative stress liver injury induced by Dioscorea bulbifera L in mice.
Alanine Transaminase
;
blood
;
Alkaline Phosphatase
;
blood
;
Animals
;
Aspartate Aminotransferases
;
blood
;
Bilirubin
;
blood
;
Chemical and Drug Induced Liver Injury
;
blood
;
metabolism
;
Dioscorea
;
toxicity
;
Glutamate-Cysteine Ligase
;
metabolism
;
Glutathione
;
metabolism
;
Heme Oxygenase-1
;
metabolism
;
Heterocyclic Compounds, 4 or More Rings
;
antagonists & inhibitors
;
isolation & purification
;
toxicity
;
Liver
;
metabolism
;
pathology
;
Male
;
Mice
;
Mice, Inbred ICR
;
Oxidative Stress
;
drug effects
;
Plants, Medicinal
;
chemistry
;
Polysaccharides
;
isolation & purification
;
pharmacology
;
Random Allocation
;
Rhodophyta
;
chemistry

Result Analysis
Print
Save
E-mail