1.Mechanism of Qitu Erzhi Decoction against chemotherapy-induced myelosuppression based on network pharmacology and experimental validation.
Meng-Meng WANG ; Hao SUN ; Gao-Biao LI ; Yu-Fei YANG ; Bin HE
China Journal of Chinese Materia Medica 2025;50(3):719-731
To investigate the mechanism of Qitu Erzhi Decoction(QTEZ) in ameliorating chemotherapy-induced myelosuppression and the focus of its decomposed formulae on the effects of hematopoietic cells of the three lineages, respectively. Ultra performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS) was used to identify the components of QTEZ intestinal absorption liquid and obtain the target sites, which were intersected with chemotherapy-induced myelosuppression targets collected from several databases, including OMIM, and an interaction network was established based on network pharmacology for Gene Ontology(GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis. Hematopoietic stem cells of mice were taken after intraperitoneal injection of 5-fluorouracil for myelosuppression modeling and randomly divided into the model group, Qitu Erzhi group, Astragali Radix-Angelicae Sinensis Radix group, Ligustri Lucidi Fructus-Ecliptae Herba group, Psoraleae Fructus-Cuscutae Semen group, and positive drug group, which were given the corresponding traditional Chinese medicine intestinal absorption liquid and the positive drug granulocyte colony-stimulating factor, respectively. The normal hematopoietic stem cells were taken as the control group and were given the intervention of normal saline. The proliferation of hematopoietic progenitor cells of three lineages was observed by flow cytometry, and the cell cycle and colony formation assay were observed. Western blot was used to verify the effect of QTEZ on the pathway proteins including phosphoinositide 3-kinase(PI3K), phosphorylated PI3K(p-PI3K), protein kinase B(AKT), and phosphorylated AKT(p-AKT). RT-qPCR and Western blot were used to detect the effects of QTEZ on cell cycle-related targets such as CDK inhibitor 1(P21), cyclin D1(CCND1), and cyclin-dependent kinase 4(CDK4). The results showed that a total of 158 components were identified by QTEZ, and 375 component and disease intersecting targets were obtained, 21 core components and 40 core targets were obtained after constructing the network, and GO and KEGG enrichment showed signaling pathways such as PI3K/AKT. QTEZ and its decomposed formulae could promote the 5-fluorouracil-blocked cell cycle to resume operation, and all of them had different degrees of restoration effects on the set of colonies, among which QTEZ had the best restoration effect, and the Astragali Radix-Angelicae Sinensis Radix group had a focused effect on colony forming unit-erythrocyte. Western blot results indicated that there was no significant difference in the expression levels of pathway proteins among the groups. RT-qPCR and Western blot results showed that QTEZ could down-regulate P21 and up-regulate the protein and mRNA expression of CDK4 and CCND1. In conclusion, QTEZ and its decomposed formulas can exert a protective effect on hematopoietic stem cells with 5-fluorouracil-induced myelosuppression by promoting the normal operation of the cell cycle and colony formation, and the mechanism may be related to the down-regulation of the cell cycle-related targets of P21 and the up-regulation of CDK4 and CCND1. In addition, Astragali Radix-Angelicae Sinensis Radix can have a targeted protective effect on erythrocytes.
Animals
;
Drugs, Chinese Herbal/chemistry*
;
Network Pharmacology
;
Mice
;
Fluorouracil/adverse effects*
;
Male
;
Antineoplastic Agents/adverse effects*
;
Hematopoietic Stem Cells/cytology*
;
Humans
;
Signal Transduction/drug effects*
2.Advances in Study of Erythroblastic Island Macrophages--Review.
Journal of Experimental Hematology 2025;33(1):292-295
Bone marrow microenvironment is the environment in which hematopoietic stem cells live, mainly composed of bone marrow stromal cells, microvessels, nerves, and cytokines secreted by stromal cells. The bone marrow microenvironment plays a crucial role in the self-renewal, directed differentiation and proliferation of hematopoietic stem cells and the regulation of proliferation, differentiation and maturation of hematopoietic cells. A class of macrophages exists in the bone marrow microenvironment, the bone marrow-resident tissue macrophages, which plays a crucial role in maintaining homeostasis in vivo, and three subpopulations of bone marrow-resident tissue macrophages have been characterized: erythroblastic island macrophages (EIMs), hematopoietic stem cell niche macrophages, and bone macrophages. This review focuses on the functions, surface markers and modeling of EIMs.
Macrophages/cytology*
;
Humans
;
Erythroblasts/cytology*
;
Animals
;
Hematopoietic Stem Cells/cytology*
3.Wip1 Phosphatase Regulates Hematopoietic Function in Mouse Spleen.
Xiao-Ping REN ; Zhi-Lin CHANG ; Yi WANG ; Hui-Min ZHU ; Wen-Yan HE
Journal of Experimental Hematology 2025;33(5):1491-1498
OBJECTIVE:
To investigate the regulatory effect of Wip1 phosphatase on hematopoietic function in the mouse spleen.
METHODS:
Wip1 knockout mice were bred, and the effect of Wip1 deletion on the proportion and number of hematopoietic stem/progenitor cells, as well as their mature subsets in mouse spleen was detected by flow cytometry. The Proteome ProfilerTM antibody array was used to analyze the role of Wip1 deletion on the expression of inflammatory cytokines in CD45highCD11b+ myeloid cells sorted from mouse spleen.
RESULTS:
Wip1 deletion resulted in smaller size and significant reduction of cell number in the mouse spleen. The absolute numbers of hematopoietic stem/progenitor cells were decreased. Meanwhile, the absolute number of T and B lymphocytes also significantly declined. However, the proportion of erythroid progenitors and erythroid cells at various stage significantly increased, but the number of mature erythroid cells decreased. Furthermore, the myeloid cells and their subsets neutrophils, monocytes, CD45highCD11b+ and CD45lowCD11b+ were all reduced. CD45highCD11b+ myeloid cells displayed proinflammatory phenotype in the spleen.
CONCLUSION
Wip1 gene deletion impairs normal hematopoietic function in the mouse spleen, leading to a significant reduction of mature hematopoietic cells of various lineages, and proinflammatory phenotype in CD45highCD11b+ myeloid cells.
Animals
;
Mice
;
Spleen/cytology*
;
Mice, Knockout
;
Hematopoietic Stem Cells/cytology*
;
Myeloid Cells/cytology*
;
Protein Phosphatase 2C
;
Hematopoiesis
;
Flow Cytometry
4.The Maintenance Effects of Extracellular Vesicles Derived from Placental Tissue and Mesenchymal Stem Cells on Hematopoietic Stem and Progenitor Cells.
Ying-Jie LIU ; Chen WANG ; Tao CHENG ; Hui CHENG
Journal of Experimental Hematology 2025;33(5):1499-1506
OBJECTIVE:
To investigate the role of extracellular vesicles (EVs) derived from placental tissue and placental mesenchymal stem cells in supporting the growth and function of adult hematopoietic stem and progenitor cells (HSPCs), so as to optimize their culture system.
METHODS:
EVs were isolated from mouse placental tissue (PL-EV) and placental mesenchymal stem cells (PL-MSC-EV). These EVs were co-cultured with 3 000 adult bone marrow LKS+ (lineage- c-Kit+ Sca-1+ ) cells for 72 hours at concentrations of 0, 1, 10, 50, 100, and 200 μg/ml. The proportion and absolute count of LKS+ cells after co-culture were analyzed by flow cytometry, while their self-renewal and multi-lineage differentiation potential were evaluated using colony-forming unit (CFU) assays.
RESULTS:
Compared to the blank control group, the proportion of LKS+ cells were significantly increased in PL-EV groups at concentrations ≥10 μg/ml after 72 hours of co-culture. Notably, LKS+ cells co-cultured at the concentration of 10 μg/ml exhibited the highest absolute count (899±171) and the highest proportion of LT-HSCs (LKS+ CD135- CD34-) (0.67%±0.07%). In the PL-MSC-EV co-culture system, the absolute count of LKS+ cells peaked at the concentration of 1 μg/ml (1011±99 cells), though the proportion of LT-HSCs was relatively low (0.15%±0.05%). The comparison between these two culture systems revealed that PL-EV at 10 μg/ml and PL-MSC-EV at 1 μg/ml displayed the most pronounced effects on LKS+ cell proliferation, but with no significant difference between them. CFU assays showed that, in the PL-EV culture system, the number of LKS+ colony formed in 1 and 10 μg/ml groups was not significantly different compared with the blank control group. In contrast, in the PL-MSC-EV system, the highest LKS+ colony-forming capacity was observed when co-cultured with 1 μg/ml PL-MSC-EV, while a significant reduction was noted at concentrations above 10 μg/ml.
CONCLUSION
PL-EV and PL-MSC-EV effectively support the growth and function of HSPCs. And PL-MSC-EV exhibits a superior efficacy in preserving the stemness of LKS+ cells, thus suggesting its potential for optimizing culture systems of HSPCs.
Mesenchymal Stem Cells/cytology*
;
Extracellular Vesicles
;
Placenta/cytology*
;
Female
;
Animals
;
Mice
;
Pregnancy
;
Hematopoietic Stem Cells/cytology*
;
Coculture Techniques
;
Cell Differentiation
;
Cell Proliferation
;
Cells, Cultured
5.p21/Zbtb18 repress the expression of cKit to regulate the self-renewal of hematopoietic stem cells.
Nini WANG ; Shangda YANG ; Yu LI ; Fanglin GOU ; Yanling LV ; Xiangnan ZHAO ; Yifei WANG ; Chang XU ; Bin ZHOU ; Fang DONG ; Zhenyu JU ; Tao CHENG ; Hui CHENG
Protein & Cell 2024;15(11):840-857
The maintenance of hematopoietic stem cells (HSCs) is a complex process involving numerous cell-extrinsic and -intrinsic regulators. The first member of the cyclin-dependent kinase family of inhibitors to be identified, p21, has been reported to perform a wide range of critical biological functions, including cell cycle regulation, transcription, differentiation, and so on. Given the previous inconsistent results regarding the functions of p21 in HSCs in a p21-knockout mouse model, we employed p21-tdTomato (tdT) mice to further elucidate its role in HSCs during homeostasis. The results showed that p21-tdT+ HSCs exhibited increased self-renewal capacity compared to p21-tdT- HSCs. Zbtb18, a transcriptional repressor, was upregulated in p21-tdT+ HSCs, and its knockdown significantly impaired the reconstitution capability of HSCs. Furthermore, p21 interacted with ZBTB18 to co-repress the expression of cKit in HSCs and thus regulated the self-renewal of HSCs. Our data provide novel insights into the physiological role and mechanisms of p21 in HSCs during homeostasis independent of its conventional role as a cell cycle inhibitor.
Animals
;
Hematopoietic Stem Cells/cytology*
;
Cyclin-Dependent Kinase Inhibitor p21/genetics*
;
Mice
;
Cell Self Renewal
;
Repressor Proteins/genetics*
;
Mice, Inbred C57BL
;
Mice, Knockout
;
Humans
;
Gene Expression Regulation
6.Different effects of long-term and short-term repeated restraints on the hematopoietic stem cells in mice.
Chen-Ke MA ; Xian WU ; Zhe XU ; Jian LIU ; Ji-Yan ZHANG ; Tao-Xing SHI
Acta Physiologica Sinica 2020;72(2):167-174
Humans with chronic psychological stress are prone to develop multiple disorders of body function including impairment of immune system. Chronic psychological stress has been reported to have negative effects on body immune system. However, the underlying mechanisms have not been clearly demonstrated. All immune cells are derived from hematopoietic stem cells (HSC) in the bone marrow, including myeloid cells which comprise the innate immunity as a pivotal component. In this study, to explore the effects of chronic psychological stress on HSC and myeloid cells, different repeated restraint sessions were applied, including long-term mild restraint in which mice were individually subjected to a 2 h restraint session twice daily (morning and afternoon/between 9:00 and 17:00) for 4 weeks, and short-term vigorous restraint in which mice were individually subjected to a 16 h restraint session (from 17:00 to 9:00 next day) for 5 days. At the end of restraint, mice were sacrificed and the total cell numbers in the bone marrow and peripheral blood were measured by cell counting. The proportions and absolute numbers of HSC (LinCD117Sca1CD150CD48) and myeloid cells (CD11bLy6C) were detected by fluorescence activated cell sorting (FACS) analysis. Proliferation of HSC was measured by BrdU incorporation assay. The results indicated that the absolute number of HSC was increased upon long-term mild restraint, but was decreased upon short-term vigorous restraint with impaired proliferation. Both long-term mild restraint and short-term vigorous restraint led to the accumulation of CD11bLy6C cells in the bone marrow as well as in the peripheral blood, as indicated by the absolute cell numbers. Taken together, long-term chronic stress led to increased ratio and absolute number of HSC in mice, while short-term stress had opposite effects, which suggests that stress-induced accumulation of CD11bLy6C myeloid cells might not result from increased number of HSC.
Animals
;
Antigens, Ly
;
metabolism
;
Bone Marrow Cells
;
cytology
;
CD11b Antigen
;
metabolism
;
Cell Proliferation
;
Hematopoietic Stem Cells
;
cytology
;
Mice
;
Mice, Inbred C57BL
;
Restraint, Physical
;
Stress, Psychological
7.Comparison of Biological Characteristics and Immunosuppressive Activity between Human Amniotic Mesenchymal Stem Cells and Human Bone Marrow Mesenchymal Stem Cells.
Jia-Qiong HONG ; Ya GAO ; Jie SONG ; Wei-Bin ZHUO ; Hai-Tao SUN ; Bao-Hong PING
Journal of Experimental Hematology 2016;24(3):858-864
OBJECTIVETo compare the biological characteristics and immunosuppressive activity between human amniotic mesenchymal stem cells (hAMSC) and human bone marrow mesenchymal stem cells (hBMMSC).
METHODSMSC from human amnion and bone marrow were isolated using enzymatic digestion and Ficoll-Hypaque density gradients, respectively. Their biological characteristics were compared by morphology, cell growth curves, cell cycle profile analysis, immunophenotype and immunofluorescence assay. Their immunosuppressive activities were studied on total activated T-cells with phytohemagglutinin (PHA-PBMSC). An in vitro co-culture was performed to compared the lymphocyte proliferation and the supernatant level of IFN-γ were measured by CCK-8 method and ELISA, respectively.
RESULTSBoth hAMSC and hBMMSC demonstrated fibroblast-like morphology. The hAMSC were able to be amplified for at least 15 passages, while the hBMMSC only for 6-7 passages. There was no significant difference in the proportion of G2/M phase cells of the 2 cells types (P>0.05). By FACS analysis for immunophenotype, both MSC were shown to be positive for CD105, CD90, CD73 and negative for CD34, CD45, CD11b, CD19, HLA-DR, but hAMSC were positive for Oct-3/4, which was in contrast to hBMMSC. Both of them expressed vimentin. Both the cells exhibited a inhibitory role on the lymphocyte proliferation induced by PHA in co-culture conditions, that was increased with the increase MSC proportion and both the suppressing effecs were enhanced. The supernatant IFN-γ levels of hAMSC co-cultured with lymphocyte at a ratio of 1:1 after 72 hours were measured by ELISA, and the level of IFN-γ was significantly lower than that in the same co-culture system of hBMMSC. In contrast to the IFN-γ in the PHA-stimulated group, the IFN-γ level in both co-culture groups was significantly lower.
CONCLUSIONMSC from amnion displayed a higher proliferative capacity and stem cell properties, compared with hBMMSC. Both MSC can inhibit lymphocyte proliferation and suppress IFN-γ secretion induced by PHA in vitro.
Amnion ; cytology ; Bone Marrow Cells ; cytology ; Cell Proliferation ; Cells, Cultured ; Coculture Techniques ; Hematopoietic Stem Cells ; cytology ; Humans ; Immunophenotyping ; Immunosuppression ; Lymphocyte Activation ; Mesenchymal Stromal Cells ; cytology ; T-Lymphocytes ; cytology
8.Ex vivo Culture System of Single Human Hematopoietic Stem Cell Used to Screan the Small Molecular Compounds.
He-Nan SONG ; Yu ZHANG ; Ya-Hui DING ; Qing JI ; Ming YANG ; Si-Bin FAN ; Zi-Xiang ZHANG ; Wei-Ping YUAN ; Tao CHENG ; Ying-Dai GAO
Journal of Experimental Hematology 2016;24(3):845-851
OBJECTIVETo explore an efficient, stable system and method to verify the regulation effect of small molecule compounds on human hematopoietic stem cells (hHSC).
METHODSBy using combination of flow cytometry with study results of surface markers on hHSC, and optimation of sorting process for further studying the effect of small molecular compounds on stem property of hHSC, the single hHSC was treated with published small molecular compounds such as SR1 and UM171 which possess the expansion effect. After treating with hHSC for 14 d, the flow cytometric analysis of cell phenotypes and cell morphologic observation were performed, at the same time the hematopoietic function of cultured hHSC was verified by colony-forming cell (CFC) test and cobblestone area forming cell (CAFC) test.
RESULTSThe effects of SR1 and UM171 and their compositions in multi-cell culture were consistent with the published data, therefore the useful concentration of compounds were obtained. The results of multiparameter sorting of single cell (CD34+ CD38- CD45RA- CD90+ CD49f+) and ex vivo culture were consistent with the results of bulk cell culture. The results of cell phenotype analysis was in accordance with flow cytometric results. In addition, CFC test and CAFC test revealed that the colony-forming ability in treated group was significantly higher than that in control group (P<0.05).
CONCLUSIONThe rapid, efficient stably amplified and short-time culture system for single hHSC and method for varifying the effect of small molecular compounds are established, which provides platform for screening small molecular compounds and lays the foundation for further study of hHSC expansion.
Cell Culture Techniques ; Cell Separation ; Flow Cytometry ; Hematopoiesis ; Hematopoietic Stem Cells ; cytology ; drug effects ; Humans ; Indoles ; pharmacology ; Pyrimidines ; pharmacology
9.Relationship among the Oxygen Concentration, Reactive Oxygen Species and the Biological Characteristics of Mouse Bone Marrow Hematopoietic Stem Cells.
Si-Hua REN ; Yu-Xin HE ; Yi-Ran MA ; Jing-Chun JIN ; Dan KANG
Journal of Experimental Hematology 2016;24(1):205-210
OBJECTIVETo investigate the effects of oxygen concentration and reactive oxygen species (ROS) on the biological characteristics of hematopoietic stem cells (HSC) and to analyzed the relationship among the oxygen concentration, ROS and the biological characteristics of mouse HSC through simulation of oxygen environment experienced by PB HSC during transplantation.
METHODSThe detection of reactive oxygen species (ROS), in vitro amplification, directional differentiation (BFU-E, CFU-GM, CFU-Mix), homing of adhesion molecules (CXCR4, CD44, VLA4, VLA5, P-selectin), migration rate, CFU-S of NOD/SCID mice irradiated with sublethal dose were performed to study the effect of oxgen concentration and reactive oxygen species on the biological characteristics of mouse BM-HSC and the relationship among them.
RESULTSThe oxygen concentrations lower than normal oxygen concentration (especially hypoxic oxygen environment) could reduce ROS level and amplify more Lin(-) c-kit(+) Sca-1(+) BM HSC, which was more helpful to the growth of various colonies (BFU-E, CFU-GM, CFU-Mix) and to maintain the migratory ability of HSC, thus promoting CFU-S growth significantly after the transplantation of HSC in NOD/SCID mice irradiated by a sublethal dose. BM HSC exposed to oxygen environments of normal, inconstant oxygen level and strenuously thanging of oxygen concentration could result in higher level of ROS, at the same time, the above-mentioned features and functional indicators were relatively lower.
CONCLUSIONThe ROS levels of BM HSC in PB HSCT are closely related to the concentrations and stability of oxygen surrounding the cells. High oxygen concentration results in an high level of ROS, which is not helpful to maintain the biological characteristics of BM HSC. Before transplantation and in vitro amplification, the application of antioxidancs and constant oxygen level environments may be beneficial for transplantation of BMMSC.
Animals ; Cell Differentiation ; Culture Media ; chemistry ; Erythroid Precursor Cells ; cytology ; Granulocyte-Macrophage Progenitor Cells ; cytology ; Hematopoietic Stem Cells ; cytology ; metabolism ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Oxygen ; chemistry ; Reactive Oxygen Species ; metabolism
10.Application of Cytotoxic T-Lymphocytes for the Treatment of Cytomegalovirus Infection in Hematopoietic Stem Cell Transplantation.
Bing-Han ZOU ; Bin ZHANG ; Hu CHEN
Journal of Experimental Hematology 2016;24(2):616-621
Human cytomegalovirus (HCMV) infection, a common complication, remains a major risk factor related with patient death after hematopoietic stem cell transplantation (HSCT). Cytotoxic T lymphocytes (CTL) which is crucial to control HCMV infection, can prevent or treat HCMV infection safely and effectively after adoptive infusion. Many studies have been focussed on exploring different methods for preparation of CTL. The method of using antigen presenting cells to stimulate peripheral blood mononuclear cells is simple to operate, easy to conduct large-scale clinical trials. Isolation of CTL from donor-derived PBMC by peptide-tetramer or INF-γ antibody requires a large volume of peripheral blood and high cost for preparation. Third-party CTL can provide an "off-the-shelf" product, but the problem of HLA-mismatch still would be solved. In addition, the clinical efficacy and safety of different methods also vary. This article reviews and compares the current methods to generate CTL and efficacy of the cells after infusions.
Adoptive Transfer
;
Antigen-Presenting Cells
;
cytology
;
Cytomegalovirus
;
Cytomegalovirus Infections
;
therapy
;
Hematopoietic Stem Cell Transplantation
;
adverse effects
;
Humans
;
Leukocytes, Mononuclear
;
cytology
;
T-Lymphocytes, Cytotoxic
;
cytology

Result Analysis
Print
Save
E-mail