1.Role of DNMT3a in Hydroquinone-Induced Hematopoietic Stem Cell Toxicity.
Kun WU ; Bo NIE ; Jin-Rong YANG ; Zheng-Xin HE ; Shen-Ju CHENG ; Yan-Hong LI ; Zhen JIN ; Ming-Xia SHI
Journal of Experimental Hematology 2022;30(2):607-612
OBJECTIVE:
To investigate the regulatory effect and mechanism of DNA methyltransferase 3A (DNMT3a) in hydroquinone-induced hematopoietic stem cell toxicity.
METHODS:
Cells (HSPC-1) were divided into 4 groups, that is A: normal HSPC-1; B: HQ-intervented HSPC-1; C: group B + pcDNA3 empty vector; D: group B + pcDNA3- DNMT3a. RT-qPCR and Western blot were used to detect the expression levels of DNMT3a and PARP-1 mRNA and protein, respectively. Cell morphology was observe; Cell viability and apoptosis rate of HSPC-1 were detected by MTT and flow cytometry, respectively.
RESULTS:
Compared with group A, the expression levels of DNMT3a mRNA and protein in HSPC-1 of group B were decreased, while PARP-1 mRNA and protein were increased (P<0.05); there was no significant difference in the above indexes between group C and group B; compared with group B, the expression levels of DNMT3a mRNA and protein showed increased, while PARP-1 mRNA and protein were decreased significantly in cells of group D transfected with DNMT3a (P<0.05). Cells in each group were transfected with DNMT3a and cultured for 24 h, HSPC-1 in group A showed high density growth and mononuclear fusion growth, while the number of HSPC-1 in group B and C decreased and grew slowly. Compared with group B and C, the cell growth rate of group D was accelerated. The MTT analysis showed that cell viability of HSPC-1 in group B were lower than that of group A at 24 h, 48 h and 72 h (P<0.05); after transfected with DNMT3a, the cell viability of HSPC-1 in group D were higher than that of group B at 24 h, 48 h and 72 h (P<0.05). The apoptosis rate of cells in group B was significantly higher than that of group A (P<0.001), while the apoptosis rate in group D was lower than that of group B (P<0.001).
CONCLUSION
DNMT3a may be involved in the damage of hematopoietic stem cells induced by hydroquinone, which may be related to the regulation of PARP-1 activity by hydroquinone-inhibited DNMT3a.
Apoptosis
;
Cell Proliferation
;
DNA Methyltransferase 3A
;
Hematopoietic Stem Cells/drug effects*
;
Humans
;
Hydroquinones/toxicity*
;
Poly (ADP-Ribose) Polymerase-1
;
RNA, Messenger/metabolism*
2.Ex vivo Culture System of Single Human Hematopoietic Stem Cell Used to Screan the Small Molecular Compounds.
He-Nan SONG ; Yu ZHANG ; Ya-Hui DING ; Qing JI ; Ming YANG ; Si-Bin FAN ; Zi-Xiang ZHANG ; Wei-Ping YUAN ; Tao CHENG ; Ying-Dai GAO
Journal of Experimental Hematology 2016;24(3):845-851
OBJECTIVETo explore an efficient, stable system and method to verify the regulation effect of small molecule compounds on human hematopoietic stem cells (hHSC).
METHODSBy using combination of flow cytometry with study results of surface markers on hHSC, and optimation of sorting process for further studying the effect of small molecular compounds on stem property of hHSC, the single hHSC was treated with published small molecular compounds such as SR1 and UM171 which possess the expansion effect. After treating with hHSC for 14 d, the flow cytometric analysis of cell phenotypes and cell morphologic observation were performed, at the same time the hematopoietic function of cultured hHSC was verified by colony-forming cell (CFC) test and cobblestone area forming cell (CAFC) test.
RESULTSThe effects of SR1 and UM171 and their compositions in multi-cell culture were consistent with the published data, therefore the useful concentration of compounds were obtained. The results of multiparameter sorting of single cell (CD34+ CD38- CD45RA- CD90+ CD49f+) and ex vivo culture were consistent with the results of bulk cell culture. The results of cell phenotype analysis was in accordance with flow cytometric results. In addition, CFC test and CAFC test revealed that the colony-forming ability in treated group was significantly higher than that in control group (P<0.05).
CONCLUSIONThe rapid, efficient stably amplified and short-time culture system for single hHSC and method for varifying the effect of small molecular compounds are established, which provides platform for screening small molecular compounds and lays the foundation for further study of hHSC expansion.
Cell Culture Techniques ; Cell Separation ; Flow Cytometry ; Hematopoiesis ; Hematopoietic Stem Cells ; cytology ; drug effects ; Humans ; Indoles ; pharmacology ; Pyrimidines ; pharmacology
3.Ligustrazine Promoted the Migration of Bone Marrow Mesenchymal Stem Cells by Up-regulating MMP-2 and MMP-9 Expressions.
Jun WANG ; Tie-bing QU ; Li-sheng CHU ; Lin LI ; Cui-cui REN ; Si-qi SUN ; Yan FANG
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(6):718-723
OBJECTIVETo explore the effect of ligustrazine on the migration of bone marrow mesenchymal stem cells (BMSCs) and protein expressions of matrix metalloproteinase-2 and-9 (MMP-2 and MMP-9) in vitro.
METHODSBMSCs were in vitro isolated and cultured using whole bone marrow adherent method, and phenotypes [surface positive antigens (CD29 and CD90) and negative antigens (CD34 and CD45)] identified using flow cytometry. BMSCs were divided into the blank control group, 25, 50, 100 µmol/L ligustrazine group, and the GM6001 group (100 µmol/L ligustrazine +MMPs inhibitor GM6001 ). The migration of BMSCs was tested by Transwell chamber test and wound healing assay after treated with ligustrazine for 24 h. The protein expressions of MMP-2 and MMP-9 were detected by Western blot.
RESULTSThe third passage BMSCs grew well in uniform morphology. The expression rate of CD29, CD90, CD34, and CD45 was 96.9%, 97.3%, 0.2%, and 3.0%, respectively. Compared with the blank control group, the number of migrated cells and relative distance of cell invasion increased, and the protein expressions of MMP-2 and MMP-9 were elevated in each ligustrazine group (P < 0.05, P < 0.01). Compared with 100 µmol/L ligustrazine group, the number of migrated cells and relative distance of cell invasion decreased in 25 and 50 µmol/L ligustrazine groups and the GM6001 group (P < 0.01). Protein expression of MMP-2 decreased in 25 and 50 µmol/L ligustrazine groups (P < 0.01).
CONCLUSIONLigustrazine could promote the migration of BMSCs in vitro, and its mechanism might be related to up-regulating expression levels of MMP-2 and MMP-9 protein.
Cell Movement ; Cells, Cultured ; Hematopoietic Stem Cells ; cytology ; drug effects ; Humans ; Matrix Metalloproteinase 2 ; metabolism ; Matrix Metalloproteinase 9 ; metabolism ; Pyrazines ; pharmacology ; Up-Regulation
4.Therapeutic Effect of Combined Cytokines on Nonhuman Primate Model of Severe Haemopoietic Acute Radiation Sickness.
Yan-Chao MA ; Ming LI ; Shuang XING ; Guo-Lin XIONG ; Xing SHEN ; Qiu CHEN ; Yu-Wen CONG ; Jin-Xiang WANG ; Nan-Kang ZHU ; Zu-Yin YU ; Xue-Guang ZHANG
Journal of Experimental Hematology 2016;24(2):573-579
OBJECTIVETo evaluate the therapeutic effects of combined administration of recombinant human granulocyte colony-stimulating factor (rhG-CSF), recombinant human thrombopoietin (rhTPO) and recombinant human interleukin-2 (rhIL-2) on radiation-induced severe haemopoietic acute radiation sickness (ARS) in rhesus monkeys, so as to provide experimental evidences for the effective clinical treatment.
METHODSSeventeen rhesus monkeys were exposed to 7.0 Gy (60)Co γ-ray total body irradiation (TBI) to establish severe haemopoietic ARS model, and were randomly divided into supportive care group, rhG-CSF+rhTPO treatment group and rhG-CSF+rhTPO+rhIL-2 treatment group. Survival time, general signs such as bleeding and infections, and peripheral blood cell counts in each group were monitored. Bone marrow cells were cultivated to examine the colony formation ability. The histomorphology changes of bone marrow were observed at 45 d post irradiation.
RESULTSAfter 7.0 Gy (60)Co γ-ray TBI, monkeys of supportive care group underwent tarry stool and emesis, then died in 12~18 d. The overall survival rate in this group was 16.7%. Gastrointestinal reactions of monkeys in two combined-cytokines treatment groups were inapparent. Combined-cytokines treatment induced 100% survival. Complete blood cells declined sharply after irradiation in each group, but two combined-cytokines treatment schemes could elevate the nadir of all blood cells, shorten the duration of pancytopenia and accelerate the recovery of hemogram. Compared with rhG-CSF+ rhTPO treatment, rhG-CSF+ rhTPO+ rhIL-2 treatment could increase the counts of lymphocytes and monocytes. The colony-formation rate of haemopoietic stem/progenitor cells in bone marrow dropped markedly at 2 d after irradiation. Combined-cytokines treatment promoted the ability of colony formation on day 29. Hematopoietic cells mostly disappeared in bone marrow of animals in supportive care group, but hematopoietic functions were recovered after cytokines were administrated.
CONCLUSIONrhG-CSF+ rhTPO and rhG-CSF+ rhTPO+ rhIL-2 treatment can significantly promote hematopoiesis recovery, improve the quantity of life, simplify the supportive therapy, and enhance the survival rate of rhesus monkeys with severe haemopoietic ARS induced by 7.0 Gy (60)Co γ-ray exposure. Especially the application of rhIL-2 can accelerate the recovery of lymphocytes and monocytes and restore the immunological function. Thus, combination of rhG-CSF, rhTPO and rhIL-2 on the basis of supportive care is an efficient strategy to treat severe haemopoietic ARS.
Animals ; Bone Marrow ; pathology ; Bone Marrow Cells ; pathology ; Gamma Rays ; Granulocyte Colony-Stimulating Factor ; pharmacology ; Hematopoiesis ; drug effects ; Hematopoietic Stem Cells ; cytology ; Humans ; Interleukin-2 ; pharmacology ; Macaca mulatta ; Radiation Injuries ; drug therapy ; Random Allocation ; Recombinant Proteins ; therapeutic use ; Thrombopoietin ; pharmacology ; Whole-Body Irradiation
5.Allogeneic clonal mesenchymal stem cell therapy for refractory graft-versus-host disease to standard treatment: a phase I study.
Hyeon Gyu YI ; Seung Ah YAHNG ; Inho KIM ; Je Hwan LEE ; Chang Ki MIN ; Jun Hyung KIM ; Chul Soo KIM ; Sun U SONG
The Korean Journal of Physiology and Pharmacology 2016;20(1):63-67
Severe graft-versus-host disease (GVHD) is an often lethal complication of allogeneic hematopoietic stem cell transplantation (HSCT). The safety of clinical-grade mesenchymal stem cells (MSCs) has been validated, but mixed results have been obtained due to heterogeneity of the MSCs. In this phase I study, the safety of bone marrow-derived homogeneous clonal MSCs (cMSCs) isolated by a new subfractionation culturing method was evaluated. cMSCs were produced in a GMP facility and intravenously administered to patients who had refractory GVHD to standard treatment resulting after allogeneic HSCT for hematologic malignancies. After administration of a single dose (1x10(6) cells/kg), 11 patients were evaluated for cMSC treatment safety and efficacy. During the trial, nine patients had 85 total adverse events and the rate of serious adverse events was 27.3% (3/11 patients). The only one adverse drug reaction related to cMSC administration was grade 2 myalgia in one patient. Treatment response was observed in four patients: one with acute GVHD (partial response) and three with chronic GVHD. The other chronic patients maintained stable disease during the observation period. This study demonstrates single cMSC infusion to have an acceptable safety profile and promising efficacy, suggesting that we can proceed with the next stage of the clinical trial.
Bone Marrow
;
Drug-Related Side Effects and Adverse Reactions
;
Graft vs Host Disease*
;
Hematologic Neoplasms
;
Hematopoietic Stem Cell Transplantation
;
Humans
;
Mesenchymal Stromal Cells*
;
Myalgia
;
Population Characteristics
6.Mobilization Effect of HS6101 on Hematopoietic Cells of Mice.
Shuang XING ; Guo-Lin XIONG ; Xing SHEN ; Xiao-Lan LIU ; Meng YANG ; Bo DONG ; Xiao-Yu LIU ; Zu-Yin YU
Journal of Experimental Hematology 2015;23(5):1427-1431
OBJECTIVEThis study was aimed to investigate the mobilization effect of HS6101 on hematopoietic cells of mice.
METHODSThe normal ICR mice were injected subcutaneously once or twice with HS6101 at 9 µg/d/mouse, or a single dose of HS6101 3, 9, 27 and 81 µg/mouse was administrated, and the mobilization effect of HS6101 in different administration times and different dosage was observed, and compared with the synergistic effects of administration of single dose of HS6101 combined with rhG-CSF (2 µg/d/mouse was injected subcutaneously for 5 consecutive days). The peripheral blood cell counts of mice were detected at different time after administration. The hematopoietic stem/progenitor cells of bone marrow and peripheral blood were detected at day 5 and 10 after administration.
RESULTSThere was no significant difference in peripheral blood cell counts after once or twice injections of HS6101 9 µg/mouse. The peripheral platelet counts dose-dependently increased in ICR mice, which accounted for 121.1% to 118.0%, 138.7% to 123.1%, 146.4% to 139.2%, and 156.2% to 168.7% (P < 0.001) after HS6101 (3, 9, 27 and 81 µg/mouse) treatments at 5 and 7 d, respectively. HS6101 (3, 9, 27 and 81 µg/mouse) showed dose-response relationship to platelets, with R value of 0.777 and 0.954 at day 5 and 7 after administration, respectively. HS6101 significantly increased numbers of hematopoietic stem/progenitor cells in both bone marrow and peripheral blood, and elevated peripheral blood leukocytes at 27 µg/mouse dose at day 5 after administration.
CONCLUSIONHS6101 has significant mobilization effect on hematopoietic stem/progenitor cells, platelets and leukocytes in mouse.
Animals ; Blood Cell Count ; Blood Platelets ; drug effects ; Granulocyte Colony-Stimulating Factor ; pharmacology ; Hematopoietic Stem Cell Mobilization ; Hematopoietic Stem Cells ; drug effects ; Leukocytes ; drug effects ; Mice ; Mice, Inbred ICR
7.Angiogenic factors are associated with development of acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation.
Di-min NIE ; Qiu-ling WU ; Xia-xia ZHU ; Ran ZHANG ; Peng ZHENG ; Jun FANG ; Yong YOU ; Zhao-dong ZHONG ; Ling-hui XIA ; Mei HONG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):694-699
Acute graft-versus-host disease (aGVHD) is a serious complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, the mechanisms of aGVHD are not well understood. We aim to investigate the roles of the three angiogenic factors: angiopoietin-1 (Ang-1), Ang-2 and vascular endothelial growth factor (VEGF) in the development of aGVHD. Twenty-one patients who underwent allo-HSCT were included in our study. The dynamic changes of Ang-1, Ang-2 and VEGF were monitored in patients before and after allo-HSCT. In vitro, endothelial cells (ECs) were treated with TNF-β in the presence or absence of Ang-1, and then the Ang-2 level in the cell culture medium and the tubule formation by ECs were evaluated. After allo-HSCT, Ang-1, Ang-2 and VEGF all exhibited significant variation, suggesting these factors might be involved in the endothelial damage in transplantation. Patients with aGVHD had lower Ang-1 level at day 7 but higher Ang-2 level at day 21 than those without aGVHD, implying that Ang-1 may play a protective role in early phase yet Ang-2 is a promotion factor to aGVHD. In vitro, TNF-β promoted the release of Ang-2 by ECs and impaired tubule formation of ECs, which were both weakened by Ang-1, suggesting that Ang-1 may play a protective role in aGVHD by influencing the secretion of Ang-2, consistent with our in vivo tests. It is concluded that monitoring changes of these factors following allo-HSCT might help to identify patients at a high risk for aGVHD.
Acute Disease
;
Adolescent
;
Adult
;
Angiogenesis Inducing Agents
;
immunology
;
metabolism
;
pharmacology
;
Angiopoietin-1
;
genetics
;
immunology
;
pharmacology
;
Angiopoietin-2
;
genetics
;
immunology
;
pharmacology
;
Antineoplastic Agents
;
therapeutic use
;
Female
;
Gene Expression Regulation, Neoplastic
;
Graft vs Host Disease
;
genetics
;
immunology
;
pathology
;
Hematopoietic Stem Cell Transplantation
;
Human Umbilical Vein Endothelial Cells
;
cytology
;
drug effects
;
immunology
;
Humans
;
Leukemia, Myeloid
;
genetics
;
immunology
;
pathology
;
therapy
;
Lymphoma, Non-Hodgkin
;
genetics
;
immunology
;
pathology
;
therapy
;
Male
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma
;
genetics
;
immunology
;
pathology
;
therapy
;
Retrospective Studies
;
Signal Transduction
;
Transplantation, Homologous
;
Tumor Necrosis Factor-alpha
;
pharmacology
;
Vascular Endothelial Growth Factor A
;
genetics
;
immunology
8.Icariin Promoted Osteogenic Differentiation of SD Rat Bone Marrow Mesenchymal Stem Cells: an Experimental Study.
Shu-ping FU ; Li YANG ; Hao HONG ; Chen OU ; Rong-hua ZHANG
Chinese Journal of Integrated Traditional and Western Medicine 2015;35(7):839-846
OBJECTIVETo observe features of Icariin in promoting osteogenic differentiation of SD rat bone marrow mesenchymal stem cells (BMSCs) in vitro.
METHODS(1) SD rats' BMSCs were isolated and purified by mechanically isolated and cultured by whole bone marrow adherent method. Effects of various concentrations Icariin on serum activities of alkaline phosphatase (ALP) were detected using amino antipyrine phenol determination method at day 3, 6, 9, 12, 15, 18, and 21. Calcium nodes of each groups were detected using alizarin red staining. Roles of various concentrations Icariin in promoting osteogenic differentiation of BMSCs were observed. (2) BMSCs were divided into the blank control group, the osteogenic induced group, and the Icariin group (0.5 microg/mL). ALP activities were detected at day 7, 14, and 21 of culture. Meanwhile, ALP positive staining rate and calcium nodes were detected at day 14 and 21 respectively. Additionally, mRNA expressions of Runt-related transcription factor-2 (Runx2) and Osteocalcin were detected at day 7, 14, and 21 by real-time fluorescent quantitative PCR.
RESULTS(1) 0.05-5.0 microg/mL Icariin could significantly elevate serum ALP activities. Of them, 0.2-2.0 microg/mL Icariin significantly increased calcium nodes numbers (P < 0.01). (2) When Icariin promoted osteogenic differentiation of BMSCs, Runx2 mRNA expression levels and ALP activities increased earlier and then decreased, while osteocalcin mRNA expression levels continued to increase (P < 0.01). Compared with the osteogenic induced group, ALP activities and ALP positive staining rate were both elevated after 14 days of Icariin treatment in the Icariin group (P < 0.05, P < 0.01).
CONCLUSIONSIcariin could promote the differentiation of BMSCs to osteoblasts by up-regulating Runx2 mRNA expression levels. It also could promote the mineralization by increasing ALP secretion and Osteocalcin mRNA expression levels, thereby promoting mature of newly generated osteoblasts.
Animals ; Bone Marrow Cells ; Cell Differentiation ; drug effects ; Flavonoids ; pharmacology ; Hematopoietic Stem Cells ; Mesenchymal Stromal Cells ; physiology ; Osteoblasts ; Osteocalcin ; Osteogenesis ; Rats ; Rats, Sprague-Dawley
9.Effect of SIRT6/NF-κB signal axis in delaying hematopoietic stem/progenitor cell senescence with ginsenoside Rg1.
Yue ZHOU ; Yan-long TANG ; Ya-ping WANG ; Jian-wei WANG ; Ji-chao DING
China Journal of Chinese Materia Medica 2015;40(3):511-515
OBJECTIVETo investigate the effect of SIRT6/NF-κB signal axis in delaying hematopoietic stem/progenitor cell senescence with ginsenoside Rg1, in order to provide theatrical and experimental basis for looking for methods for delaying HSC senescence.
METHODSca-1 + HSC/HPC was isolated by magnetic cell sorting (MACS) and divided into five groups: the normal control group, the aging group, the positive control group, the Rg1 anti-senescence group, and the Rg1-treated group. Senescence-associated β-galactosidase (SA-β-Gal) staining, cell cycle analysis and hemopoietic progenitor cell mix (CFU-Mix) were adopted to determine the effect Rg1 in delaying or treating Sca-1 + HSC/HPC senescence biology. The mRNA and protein of senescence regulation molecules SIRT6 and NF-KB were examined by realtime fluorescence quantitative PCR (FQ-PCR) and western blotting.
RESULTCompared with the senescence group, the Rg1 anti-senescence group and the Rg1-treated group showed lower percentage in SA-β-Gal-stained positive cells, decreased cell proportion in G1 phase, increased number of CFU-Mix, up-regulated in SIRT6 mRNA and protein expression, down-regulation in NF-KB mRNA and protein expression. The Rg1 anti-senescence group showed more evident changes in indexes than the Rg1-treated group.
CONCLUSIONRg, may inhibit Sca-1 + HSC/HPC senescence induced by t-BHP by regulating SIRT6/NF-KB signal path.
Animals ; Antigens, Ly ; analysis ; Cellular Senescence ; drug effects ; Female ; Ginsenosides ; pharmacology ; Hematopoietic Stem Cells ; drug effects ; Male ; Membrane Proteins ; analysis ; Mice ; Mice, Inbred C57BL ; NF-kappa B ; physiology ; Signal Transduction ; physiology ; Sirtuins ; physiology
10.Effect of PD0332991 on biological activity of hematopoietic stem cells in mice.
Qing JI ; Ruizhe QI ; Liyan ZHANG ; Yu ZHANG ; Jing XU ; Weiping YUAN ; Tao CHENG ; Yingdai GAO
Chinese Journal of Hematology 2014;35(2):157-161
OBJECTIVETo investigate the effect of PD0332991 (C24H29N7O2) on cell cycle, apoptosis, differentiation and self-renewal of hematopoietic stem cells (HSC) in mice.
METHODSThe self renewal ability of HSCs was measured by cobblestone forming cell assay (CAFC). The colony-forming cell (CFC) assay was used to quantify the changes of numbers and functions of HPC after the treatment of the compound. The expressions of self-renewal regulation genes, cell cycle-related genes, apoptosis-related genes were measured by real-time PCR. The cell cycle status and apoptosis of HSC and HPC were analyzed by flow cytometry.
RESULTSThere were obvious changes in cell cycle regulation between control and PD0332991 groups. HSCs in G1 phase increased significantly from 76.3% to 89.5% after treatment of PD0332991 (P<0.05) while cells in S, G2 and M phase reduced from 20.5% to 7.3% (P<0.05). HPCs in G1 phase also increased from 74% to 87.4% after treatment of PD0332991 (P<0.05) while cells in S, G2 and M phase reduced from 25.54% to 11.6% (P<0.05). The apoptotic fractions between control and PD0332991 groups had no statistical difference (P>0.05). After cultured with PD0332991, the expression levels of cell cycle genes CDK1, CyclinA2, CyclinF, p18, p19 and p27 decreased by 58.77%, 66.35%, 56.33%, 62.18%, 32.28% and 36.53% respectively, while expression of CDK7 increased by 27.27% (P<0.05). No visible expression difference was observed in apoptosis and self-renew related genes. After treatment of PD0332991, the self-renewal ability of HSC decreased significantly. There were almost no CFCs in PD0332991 group in CAFC assay. Similarly, the frequency of CFCs was dramatically lower in PD0332991 group.
CONCLUSIONThese results suggested that PD0332991 affected HSC/HPC from mice mainly through inhibiting the cell cycle rather than apoptosis. It also suggested that CDK4/6 might play a key role in the regulation of HSC/HPC.
Animals ; Apoptosis ; drug effects ; Cell Cycle ; drug effects ; Cell Differentiation ; Cell Proliferation ; Cells, Cultured ; Hematopoietic Stem Cells ; cytology ; drug effects ; Mice ; Mice, Inbred C57BL ; Piperazines ; pharmacology ; Pyridines ; pharmacology

Result Analysis
Print
Save
E-mail