1.Effects of electroacupuncture at pterygopalatine region on NLRP3-mediated pyroptosis and inflammatory factors in allergic rhinitis rats.
Haiyang LV ; Meihui TIAN ; Shuyi SHE ; Yucheng LIU ; Lei SUN ; Wu SONG ; Yong TANG
Chinese Acupuncture & Moxibustion 2025;45(3):345-350
OBJECTIVE:
To observe the effects of electroacupuncture at the pterygopalatine region on nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)-mediated pyroptosis and inflammatory factors in rats with allergic rhinitis (AR).
METHODS:
Twenty-four SD rats were randomly divided into a blank group, a model group, an acupuncture group and an electroacupuncture group, 6 rats in each group. Except for the blank group, OVA-induced AR model was established in the remaining groups. In the electroacupuncture group, the rats were treated with electroacupuncture at the bilateral pterygopalatine region, with disperse-dense wave, in frequency of 2 Hz/100 Hz and current of 0.5-1 mA, 15 min each time, once every other day, for 3 times. In the acupuncture group, the rats were treated with acupuncture at bilateral pterygopalatine region simply, without electrical stimulation. The rhinitis symptom score was observed, the pathomorphology of the nasal mucosa was observed by HE staining; the serum levels of OVA-specific immunoglobulin E (OVA-sIgE), interleukin (IL)-4, IL-6 and IL-1β were detected by ELISA; the mRNA expression of NLRP3, apoptosis-associated speck-like protein containing CARD (ASC), cysteinyl aspartate specific proteinase-1 (caspase-1) and IL-18 in the nasal mucosa was detected by real-time PCR; the protein expression of NLRP3, ASC, caspase-1 and IL-18 in the nasal mucosa was detected by Western blot.
RESULTS:
Compared with the blank group, in the model group, the rhinitis symptom score was increased (P<0.01), the serum levels of OVA-sIgE, IL-4, IL-6 and IL-1β were increased (P<0.05), the nasal mucosa showed pathomorphology of inflammatory infiltration; the mRNA and protein expression of NLRP3, ASC, caspase-1 and IL-18 in the nasal mucosa was increased (P<0.05). Compared with the model group, in the electroacupuncture group, the rhinitis symptom score was reduced (P<0.01), the pathology of the nasal mucosa was improved; the serum levels of OVA-sIgE, IL-4, IL-6 and IL-1β were decreased (P<0.05); the mRNA and protein expression of NLRP3, ASC, caspase-1 and IL-18 in the nasal mucosa was decreased (P<0.05).
CONCLUSION
Electroacupuncture at the pterygopalatine region can exerting the anti-inflammatory effect by inhibiting NLRP3-mediated pyroptosis and inflammatory factor imbalance, thus alleviate rhinitis symptoms in AR rats.
Animals
;
Electroacupuncture
;
NLR Family, Pyrin Domain-Containing 3 Protein/immunology*
;
Rats
;
Rats, Sprague-Dawley
;
Rhinitis, Allergic/physiopathology*
;
Pyroptosis
;
Male
;
Acupuncture Points
;
Humans
;
Female
;
Interleukin-1beta/genetics*
;
Interleukin-18/immunology*
;
Interleukin-6/genetics*
;
Caspase 1/immunology*
2.Efficacy and safety of avatrombopag in the treatment of thrombocytopenia after umbilical cord blood transplantation.
Aijie HUANG ; Guangyu SUN ; Baolin TANG ; Yongsheng HAN ; Xiang WAN ; Wen YAO ; Kaidi SONG ; Yaxin CHENG ; Weiwei WU ; Meijuan TU ; Yue WU ; Tianzhong PAN ; Xiaoyu ZHU
Chinese Medical Journal 2025;138(9):1072-1083
BACKGROUND:
Delayed platelet engraftment is a common complication after umbilical cord blood transplantation (UCBT), and there is no standard therapy. Avatrombopag (AVA) is a second-generation thrombopoietin (TPO) receptor agonist (TPO-RA) that has shown efficacy in immune thrombocytopenia (ITP). However, few reports have focused on its efficacy in patients diagnosed with thrombocytopenia after allogeneic hematopoietic stem cell transplantation (allo-HSCT).
METHODS:
We conducted a retrospective study at the First Affiliated Hospital of the University of Science and Technology of China to evaluate the efficacy of AVA as a first-line TPO-RA in 65 patients after UCBT; these patients were compared with 118 historical controls. Response rates, platelet counts, megakaryocyte counts in bone marrow, bleeding events, adverse events and survival rates were evaluated in this study. Platelet reconstitution differences were compared between different medication groups. Multivariable analysis was used to explore the independent beneficial factors for platelet implantation.
RESULTS:
Fifty-two patients were given AVA within 30 days post-UCBT, and the treatment was continued for more than 7 days to promote platelet engraftment (AVA group); the other 13 patients were given AVA for secondary failure of platelet recovery (SFPR group). The median time to platelet engraftment was shorter in the AVA group than in the historical control group (32.5 days vs . 38.0 days, Z = 2.095, P = 0.036). Among the 52 patients in the AVA group, 46 achieved an overall response (OR) (88.5%), and the cumulative incidence of OR was 91.9%. Patients treated with AVA only had a greater 60-day cumulative incidence of platelet engraftment than patients treated with recombinant human thrombopoietin (rhTPO) only or rhTPO combined with AVA (95.2% vs . 84.5% vs . 80.6%, P <0.001). Patients suffering from SFPR had a slightly better cumulative incidence of OR (100%, P = 0.104). Patients who initiated AVA treatment within 14 days post-UCBT had a better 60-day cumulative incidence of platelet engraftment than did those who received AVA after 14 days post-UCBT (96.6% vs . 73.9%, P = 0.003).
CONCLUSION
Compared with those in the historical control group, our results indicate that AVA could effectively promote platelet engraftment and recovery after UCBT, especially when used in the early period (≤14 days post-UCBT).
Humans
;
Female
;
Male
;
Thrombocytopenia/etiology*
;
Adult
;
Retrospective Studies
;
Cord Blood Stem Cell Transplantation/adverse effects*
;
Middle Aged
;
Adolescent
;
Young Adult
;
Thiazoles/adverse effects*
;
Platelet Count
;
Receptors, Thrombopoietin/agonists*
;
Child
;
Thiophenes
3.Involvement of interferon γ-producing mast cells in immune responses against melanocytes in vitiligo requires Mas-related G protein-coupled receptor X2 activation.
Zhikai LIAO ; Yunzhu YAO ; Bingqi DONG ; Yue LE ; Longfei LUO ; Fang MIAO ; Shan JIANG ; Tiechi LEI
Chinese Medical Journal 2025;138(11):1367-1378
BACKGROUND:
Increasing evidence indicates that oxidative stress and interferon γ (IFNγ)-driven cellular immune responses are responsible for the pathogenesis of vitiligo. However, the connection between oxidative stress and the local production of IFNγ in early vitiligo remains unexplored. The aim of this study was to identify the mechanism underlying the production of IFNγ by mast cells and its impact on vitiligo pathogenesis.
METHODS:
Skin specimens from the central, marginal, and perilesional skin areas of active vitiligo lesions were collected to characterize changes of mast cells, CD8 + T cells, and IFNγ-producing cells. Cell supernatants from hydrogen peroxide (H 2 O 2 )-treated keratinocytes (KCs) were harvested to measure levels of soluble stem cell factor (sSCF) and matrix metalloproteinase (MMP)-9. A murine vitiligo model was established using Mas-related G protein-coupled receptor-B2 (MrgB2, mouse ortholog of human MrgX2) conditional knockout (MrgB2 -/- ) mice to investigate IFNγ production and inflammatory cell infiltrations in tail skin following the challenge with tyrosinase-related protein (Tyrp)-2 180 peptide. Potential interactions between the Tyrp-2 180 peptide and MrgX2 were predicted using molecular docking. The siRNAs targeting MrgX2 and the calcineurin inhibitor FK506 were also used to examine the signaling pathways involved in mast cell activation.
RESULTS:
IFNγ-producing mast cells were closely aligned with the recruitment of CD8 + T cells in the early phase of vitiligo skin. sSCF released by KCs through stress-enhanced MMP9-dependent proteolytic cleavage recruited mast cells into sites of inflamed skin (Perilesion vs . lesion, 13.00 ± 4.00/high-power fields [HPF] vs . 26.60 ± 5.72/HPF, P <0.05). Moreover, IFNγ-producing mast cells were also observed in mouse tail skin following challenge with Tyrp-2 180 (0 h vs . 48 h post-recall, 0/HPF vs . 3.80 ± 1.92/HPF, P <0.05). The IFNγ + mast cell and CD8 + T cell counts were lower in the skin of MrgB2 -/- mice than in those of wild-type mice (WT vs . KO 48 h post-recall, 4.20 ± 0.84/HPF vs . 0.80 ± 0.84/HPF, P <0.05).
CONCLUSION
Mast cells activated by MrgX2 serve as a local IFNγ producer that bridges between innate and adaptive immune responses against MCs in early vitiligo. Targeting MrgX2-mediated mast cell activation may represent a new strategy for treating vitiligo.
Vitiligo/metabolism*
;
Mast Cells/immunology*
;
Animals
;
Interferon-gamma/metabolism*
;
Mice
;
Humans
;
Melanocytes/metabolism*
;
Receptors, G-Protein-Coupled/genetics*
;
Mice, Knockout
;
Mice, Inbred C57BL
;
Male
;
Female
;
Matrix Metalloproteinase 9/metabolism*
;
Stem Cell Factor/metabolism*
4.Hypoxia-inducible factor-prolyl hydroxylase inhibitors in treatment of anemia with chronic disease.
Zuolin LI ; Lan SHEN ; Yan TU ; Shun LU ; Bicheng LIU
Chinese Medical Journal 2025;138(12):1424-1432
Anemia of chronic disease (ACD) is the most frequent clinical issue in patients with chronic disease. ACD is usually secondary to chronic kidney disease (CKD), cancer, and chronic infection, which is associated with poor health outcomes, increased morbidity and mortality, and substantial economic costs. Current treatment options for ACD are very limited. The discovery of the hypoxia-inducible factor-prolyl hydroxylase (HIF-PHD) pathway made it possible to develop novel therapeutic agents (such as hypoxia-inducible factor-prolyl hydroxylase inhibitor, HIF-PHI) to treat ACD by stabilizing HIF and subsequently promoting endogenous erythropoietin (EPO) production and iron absorption and utilization. Thus, HIF-PHIs appear to open a new door for the treatment of ACD patients with a novel mechanism. Here, we comprehensively reviewed the latest advancements in the application of HIF-PHIs in ACD. Specifically, we highlighted the key features of HIF-PHIs on ACD, such as stimulation of endogenous EPO, handling iron metabolism, inflammation-independent, and prolonging lifespan of red blood cells. In conclusion, the success of HIF-PHIs in the treatment of ACD may expand the therapeutic opportunity for other types of anemia beyond renal anemia.
Humans
;
Anemia/metabolism*
;
Chronic Disease
;
Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism*
;
Erythropoietin/metabolism*
;
Prolyl-Hydroxylase Inhibitors/therapeutic use*
;
Animals
;
Renal Insufficiency, Chronic
5.Intermittent hypoxia aggravates asthma inflammation via NLRP3/IL-1β-dependent pyroptosis mediated by HIF-1α signalling pathway.
Ling ZHOU ; Huojun ZHANG ; Lu LIU ; Fengqin ZHANG ; Lingling WANG ; Pengdou ZHENG ; Zhenyu MAO ; Xiaoyan ZHU ; Guisha ZI ; Lixiang CHEN ; Xiaojing CAI ; Huiguo LIU ; Wei LIU
Chinese Medical Journal 2025;138(14):1714-1729
BACKGROUND:
Asthma is a common chronic inflammatory airway disease and intermittent hypoxia is increasingly recognized as a factor that may impact disease progression. The present study investigated whether intermittent hypoxia (IH) could aggravate asthma by promoting hypoxia-inducible factor-1α (HIF-1α)/nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain-containing protein 3 (NLRP3)/interleukin (IL)-1β-dependent pyroptosis and the inflammatory response and further elucidated the underlying molecular mechanisms involved.
METHODS:
A total of 49 patients diagnosed with severe bronchial asthma and diagnosed by polysomnography were enrolled at Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, between January 2022 and December 2022, and their general data and induced sputum were collected. BEAS-2B cells were treated with IL-13 and subjected to IH. An ovalbumin (OVA)-treated mouse model was also used to assess the effects of chronic intermittent hypoxia (CIH) on asthma. Pyroptosis, the inflammatory response, and related signalling pathways were assessed in vivo and in vitro .
RESULTS:
In this study, as the apnoea and hypopnea index (AHI) increased, the proportion of patients with uncontrolled asthma increased. The proportions of neutrophils and the levels of IL-6, IL-8, HIF-1α and NLRP3 in induced sputum were related to the AHI. NLRP3-mediated pyroptosis, which could be mediated by the HIF-1α signalling pathway, was activated in IL-13 plus IH-treated BEAS-2B cells and in the lungs of OVA/CIH mice. HIF-1α downregulation significantly reduced lung pyroptosis and ameliorated neutrophil inflammation by modulating the NLRP3/IL-1β pathway both in vitro and in vivo . Similarly, pretreatment with LW6, an inhibitor of HIF-1α, effectively blocked the generation of inflammatory cytokines in neutrophils. In addition, administration of the NLRP3 activator nigericin obviously increased lung neutrophil inflammation.
CONCLUSIONS
Obstructive sleep apnoea-hypopnea syndrome (OSAHS) is a risk factor for asthma exacerbation. IH aggravates neutrophil inflammation in asthma via NLRP3/IL-1β-dependent pyroptosis mediated by the HIF-1α signalling pathway, which should be considered a potential therapeutic target for the treatment of asthma with OSAHS.
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Humans
;
Asthma/metabolism*
;
Animals
;
Pyroptosis/physiology*
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Mice
;
Signal Transduction/physiology*
;
Male
;
Hypoxia/metabolism*
;
Female
;
Interleukin-1beta/metabolism*
;
Adult
;
Inflammation/metabolism*
;
Middle Aged
;
Mice, Inbred C57BL
6.Material basis and mechanism of action of Arisaematis Rhizoma Preparatum in treatment of chronic obstructive pulmonary disease based on animal experiments, UPLC Q-Exactive Orbitrap MS, and network pharmacology.
Lin CHU ; Shao-Qing ZHU ; Zi-Xuan YANG ; Wei WANG ; Huan YANG
China Journal of Chinese Materia Medica 2025;50(7):1792-1802
This study investigates the material basis and mechanism of Arisaematis Rhizoma Preparatum in the treatment of chronic obstructive pulmonary disease(COPD) using animal experiments, component analysis, network pharmacology, and molecular docking. A mouse model of COPD was constructed by cigarette smoke and lipopolysaccharide(LPS). Blood gas analysis was performed to measure the pH and partial pressure of carbon dioxide(PCO_2) in the blood of the mice. Lung tissue sections were analyzed using HE staining, and the effects of Arisaematis Rhizoma Preparatum water extract on inflammatory factors(TNF-α, IL-6, and IL-1β) and the PI3K/AKT signaling pathway in the lung tissue of COPD model mice were studied by qPCR and Western blot. The composition of the Arisaematis Rhizoma Preparatum water extract was analyzed using UPLC Q-Exactive Orbitrap MS. The SwissTargetPrediction database was used to predict the targets of the chemical components in Arisaematis Rhizoma Preparatum. GeneCards, OMIM, TTD, PharmGKB and DrugBank disease databases were used to screen for COPD targets, and the potential targets of Arisaematis Rhizoma Preparatum in treating COPD were identified. A protein-protein interaction(PPI) network of intersection targets was constructed and analyzed using the STRING database and Cytoscape 3.9.0, and core genes were screened. GO functional analysis and KEGG pathway enrichment analysis were performed using R language, and molecular docking verification was conducted using AutoDock Vina software. The results of the animal experiments showed that Arisaematis Rhizoma Preparatum water extract improved pulmonary ventilation function in COPD model mice, reduced lung inflammatory cells, decreased alveolar cavities, and improved lung tissue condition. The levels of inflammatory factors TNF-α, IL-6 and IL-1β were decreased, and the phosphorylation levels of PI3K and AKT were inhibited. Fifty-two chemical components were identified from Arisaematis Rhizoma Preparatum, and 440 intersection targets related to COPD were found. Nine key components were screened, including hydroxyphenylethylamine, L-tyrosine, L-tyrosyl-L-alanine, 3,4,5-trihydroxy-1-cyclohexene-1-carboxylic acid, methyl azelate, zingerone, 6-gingerol, linoleamide, and linoleoyl ethanolamine. Five core targets were identified, including AKT1, TNF, STAT3, ESR1, and IL1B. The PI3K/AKT pathway was identified as the key pathway for the treatment of COPD with Arisaematis Rhizoma Preparatum. Molecular docking results showed that 75% of the binding energies of key components and core targets were less than-5 kcal·mol~(-1), indicating good binding affinity. In conclusion, Arisaematis Rhizoma Preparatum may improve pulmonary ventilation function, enhance lung pathological morphology, and reduce pulmonary inflammation in COPD model mice by inhibiting the PI3K/AKT signaling pathway and downregulating TNF-α, IL-6, and IL-1β inflammatory factors. The material basis may be associated with L-tyrosyl-L-alanine, 3,4,5-trihydroxy-1-cyclohexene-1-carboxylic acid, zingerone and 6-gingerol, and AKT1 and TNF may be the primary targets.
Animals
;
Pulmonary Disease, Chronic Obstructive/metabolism*
;
Network Pharmacology
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Rhizome/chemistry*
;
Humans
;
Molecular Docking Simulation
;
Chromatography, High Pressure Liquid
;
Disease Models, Animal
;
Signal Transduction/drug effects*
;
Lung/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Interleukin-6/immunology*
7.Mechanism of Yishen Jiangtang Decoction in regulating endoplasmic reticulum stress-mediated NLRP3 inflammasome to improve renal damage in diabetic nephropathy db/db mice.
Yun-Jie YANG ; Bin-Hua YE ; Chen QIU ; Han-Qing WU ; Bo-Wei HUANG ; Tong WANG ; Shi-Wei RUAN ; Fang GUO ; Jian-Ting WANG ; Ming-Qian JIANG
China Journal of Chinese Materia Medica 2025;50(10):2740-2749
This study aims to explore the mechanism through which Yishen Jiangtang Decoction(YSJTD) regulates endoplasmic reticulum stress(ERS)-mediated NOD-like receptor thermal protein domain associated protein 3(NLRP3) inflammasome to improve diabetic nephropathy(DN) in db/db mice. Thirty db/db mice were randomly divided into the model group, YSJTD group, ERS inhibitor 4-phenylbutyric acid(4-PBA) group, with 10 mice in each group. Additionally, 10 db/m mice were selected as the control group. The YSJTD group was orally administered YSJTD at a dose of 0.01 mL·g~(-1), the 4-PBA group was orally administered 4-PBA at a dose of 0.5 mg·g~(-1), and the control and model groups were given an equal volume of carboxylmethyl cellulose sodium. The treatments were administered once daily for 8 weeks. Food intake, water consumption, and body weight were recorded every 2 weeks. After the intervention, fasting blood glucose(FBG), glycosylated hemoglobin(HbA1c), urine microalbumin(U-mALB), 24-hour urine volume, serum creatinine(Scr), and blood urea nitrogen(BUN) were measured. Inflammatory markers interleukin-1β(IL-1β) and interleukin-18(IL-18) were detected using the enzyme-linked immunosorbent assay(ELISA). Renal pathology was assessed through hematoxylin-eosin(HE), periodic acid-Schiff(PAS), and Masson staining, and transmission electron microscopy(TEM). Western blot was used to detect the expression levels of glucose-regulated protein 78(GRP78), C/EBP homologous protein(CHOP), NLRP3, apoptosis-associated speck-like protein containing CARD(ASC), cysteinyl aspartate-specific proteinase(caspase-1), and gasdermin D(GSDMD) in kidney tissues. The results showed that compared to the control group, the model group exhibited poor general condition, increased weight and food and water intake, and significantly higher levels of FBG, HbA1c, U-mALB, kidney index, 24-hour urine volume, IL-1β, and IL-18. Compared to the model group, the YSJTD and 4-PBA groups showed improved general condition, increased body weight, decreased food intake, and lower levels of FBG, U-mALB, kidney index, 24-hour urine volume, and IL-1β. Specifically, the YSJTD group showed a significant reduction in IL-18 levels compared to the model group, while the 4-PBA group exhibited decreased water intake and HbA1c levels compared to the model group. Although there was a decreasing trend in water intake and HbA1c in the YSJTD group, the differences were not statistically significant. No significant differences were observed in BUN, Scr, and kidney weight among the groups. Renal pathology revealed that the model group exhibited more severe renal damage compared to the control group. Kidney sections from the model group showed diffuse mesangial proliferation in the glomeruli, tubular edema, tubular dilation, significant inflammatory cell infiltration in the interstitium, and increased glycogen staining and blue collagen deposition in the basement membrane. In contrast, the YSJTD and 4-PBA groups showed varying degrees of improvement in renal damage, glycogen staining, and collagen deposition, with the YSJTD group showing more significant improvements. TEM analysis indicated that the model group had extensive cytoplasmic edema, homogeneous thickening of the basement membrane, fewer foot processes, and widening of fused foot processes. In the YSJTD and 4-PBA groups, cytoplasmic swelling of renal tissues was reduced, the basement membrane remained intact and uniform, and foot process fusion improved.Western blot results indicated that compared to the control group, the model group showed upregulation of GRP78, CHOP, GSDMD, NLRP3, ASC, and caspase-1 expression. In contrast, both the YSJTD and 4-PBA groups showed downregulation of these markers compared to the model group. These findings suggest that YSJTD exerts a protective effect against DN by alleviating NLRP3 inflammasome activation through the inhibition of ERS, thereby improving the inflammatory response in db/db DN mice.
Animals
;
Endoplasmic Reticulum Stress/drug effects*
;
Diabetic Nephropathies/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Inflammasomes/drug effects*
;
Male
;
Kidney/pathology*
;
Endoplasmic Reticulum Chaperone BiP
;
Humans
;
Interleukin-18/genetics*
;
Mice, Inbred C57BL
8.Mechanism of Zexie Decoction against liver injury in rats with hyperlipidemic acute pancreatitis based on network pharmacology.
Tian-Tian TANG ; Rong-Zhan ZHANG ; Fang HUANG ; Lu-Zhou XU ; Jia ZHOU
China Journal of Chinese Materia Medica 2025;50(15):4352-4362
This study aimed to investigate the effect and underlying mechanisms of Zexie Decoction against liver injury in rats with hyperlipidemic acute pancreatitis(HLAP). The network pharmacology-related databases were used to screen the active components and potential targets of Zexie Decoction, as well as the disease targets of HLAP. A protein-protein interaction(PPI) network of the overlapping targets was constructed. Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis and Gene Ontology(GO) functional enrichment analysis were performed on the overlapping targets. Sprague-Dawley(SD) rats were randomly divided into sham group, model group, low-dose Zexie Decoction group, and high-dose Zexie Decoction group. Enzyme-linked immunosorbent assay(ELISA) kits were used to detect serum biochemical indicators. Hematoxylin-eosin(HE) staining was used to observe the pathological morphology of the pancreas and liver tissues, while oil red O staining was employed to assess hepatic steatosis. Immunofluorescence staining was used to detect the expression of IL-1β and NLRP3 in pancreatic tissues. Western blot analysis was conducted to evaluate the expression levels of proteins related to oxidative stress, endoplasmic reticulum stress, the PI3K/AKT signaling pathway, and autophagy. Network pharmacology predictions identified 721 targets of Zexie Decoction and 2 486 targets associated with HLAP, with 279 overlapping targets. GO enrichment analysis yielded 1 112 entries, and KEGG enrichment analysis identified 179 signaling pathways. Experimental results showed that Zexie Decoction could reduce the levels of lipid metabolites, serum enzymes, and inflammatory cytokines in HLAP rats, alleviate pathological damage to the pancreas and liver, decrease hepatic lipid accumulation, and decrease the expression of IL-1β and NLRP3 in pancreatic tissues. In addition, Zexie Decoction significantly upregulated the expression of antioxidant stress-related proteins NRF2 and HO-1, downregulated the expression of endoplasmic reticulum stress-related proteins BiP, xBP1s, p-eIF2α, eIF2α, and ATF4, inhibited the expression of PI3K and phosphorylation of AKT, increased the expression of autophagy-related proteins Beclin1, ATG3, ATG5, and ATG12, and reduced the expression of p62. In conclusion, Zexie Decoction can improve HLAP, and its mechanism may be associated with alleviating oxidative stress and endoplasmic reticulum stress, inhibiting the PI3K/AKT pathway, and inducing autophagy in hepatocytes.
Animals
;
Rats, Sprague-Dawley
;
Drugs, Chinese Herbal/administration & dosage*
;
Network Pharmacology
;
Rats
;
Pancreatitis/genetics*
;
Hyperlipidemias/genetics*
;
Male
;
Liver/injuries*
;
Protein Interaction Maps/drug effects*
;
Signal Transduction/drug effects*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Interleukin-1beta/genetics*
;
Humans
9.Effect of removing microglia from spinal cord on nerve repair after spinal cord injury in mice.
Qi JIANG ; Chao QI ; Yuerong SUN ; Shiyuan XUE ; Xinyi WEI ; Haitao FU
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(6):754-761
OBJECTIVE:
To investigate the effects of removing microglia from spinal cord on nerve repair and functional recovery after spinal cord injury (SCI) in mice.
METHODS:
Thirty-nine 6-week-old female C57BL/6 mice were randomly divided into control group ( n=12), SCI group ( n=12), and PLX3397+SCI group ( n=15). The PLX3397+SCI group received continuous feeding of PLX3397, a colony-stimulating factor 1 receptor inhibitor, while the other two groups were fed a standard diet. After 14 days, both the SCI group and the PLX3397+SCI group were tested for ionized calcium binding adapter molecule 1 (Iba1) to confirm that the PLX3397+SCI group had completely depleted the spinal cord microglia. The SCI model was then prepared by clamping the spinal cord in both the SCI group and the PLX3397+SCI group, while the control group underwent laminectomy. Preoperatively and at 1, 3, 7, 14, 21, and 28 days postoperatively, the Basso Mouse Scale (BMS) was used to assess the hind limb function of mice in each group. At 28 days, a footprint test was conducted to observe the gait of the mice. After SCI, spinal cord tissue from the injury site was taken, and Iba1 immunofluorescence staining was performed at 7 days to observe the aggregation and proliferation of microglia in the spinal cord. HE staining was used to observe the formation of glial scars at the injury site at 28 days; glial fibrillary acidic protein (GFAP) immunofluorescence staining was applied to astrocytes to assess the extent of the injured area; neuronal nuclei antigen (NeuN) immunofluorescence staining was used to evaluate neuronal survival. And 5-hydroxytryptamine (5-HT) immunofluorescence staining was performed to assess axonal survival at 60 days.
RESULTS:
All mice survived until the end of the experiment. Immunofluorescence staining revealed that the microglia in the spinal cord of the PLX3397+SCI group decreased by more than 95% compared to the control group after 14 days of continuous feeding with PLX3397 ( P<0.05). Compared to the control group, the BMS scores in the PLX3397+SCI group and the SCI group significantly decreased at different time points after SCI ( P<0.05). Moreover, the PLX3397+SCI group showed a further decrease in BMS scores compared to the SCI group, and exhibited a dragging gait. The differences between the two groups were significant at 14, 21, and 28 days ( P<0.05). HE staining at 28 days revealed that the SCI group had formed a well-defined and dense gliotic scar, while the PLX3397+SCI group also developed a gliotic scar, but with a more blurred and loose boundary. Immunofluorescence staining revealed that the number of microglia near the injury center at 7 days increased in the SCI group than in the control group, but the difference between groups was not significant ( P>0.05). In contrast, the PLX3397+SCI group showed a significant reduction in microglia compared to both the control and SCI groups ( P<0.05). At 28 days after SCI, the area of spinal cord injury in the PLX3397+SCI group was significantly larger than that in SCI group ( P<0.05); the surviving neurons significantly reduced compared with the control group and SCI group ( P<0.05). The axonal necrosis and retraction at 60 days after SCI were more obvious.
CONCLUSION
The removal of microglia in the spinal cord aggravate the tissue damage after SCI and affecte the recovery of motor function in mice, suggesting that microglia played a neuroprotective role in SCI.
Animals
;
Spinal Cord Injuries/surgery*
;
Microglia/pathology*
;
Female
;
Mice
;
Mice, Inbred C57BL
;
Nerve Regeneration/drug effects*
;
Spinal Cord/pathology*
;
Pyrroles/administration & dosage*
;
Aminopyridines/administration & dosage*
;
Recovery of Function
;
Disease Models, Animal
;
Calcium-Binding Proteins/metabolism*
;
Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors*
;
Microfilament Proteins/metabolism*
;
Glial Fibrillary Acidic Protein/metabolism*
10.Preparation of calcium phosphate nanoflowers and evaluation of their antioxidant and osteogenic induction capabilities in vitro.
Mingyu JIA ; Zhihong CHEN ; Huajian ZHOU ; Yukang ZHANG ; Min WU
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(9):1203-1211
OBJECTIVE:
To investigate the antioxidant and osteogenic induction capabilities of calcium phosphate nanoflowers (hereinafter referred to as nanoflowers) in vitro at different concentrations.
METHODS:
Nanoflowers were prepared using gelatin, tripolyphosphate, and calcium chloride. Their morphology, microstructure, elemental composition and distribution, diameter, and molecular constitution were characterized using scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and energy-dispersive spectroscopy. Femurs and tibias were harvested from twelve 4-week-old Sprague Dawley rats, and bone marrow mesenchymal stem cells (BMSCs) were isolated and cultured using the whole bone marrow adherent method, followed by passaging. The third passage cells were identified as stem cells by flow cytometry and then co-cultured with nanoflowers at concentrations of 0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, and 3.6 mg/mL. Cell counting kit 8 (CCK-8) assay was performed to screen for the optimal concentration that demonstrated the best cell viability, which was subsequently used as the experimental concentration for further studies. After co-culturing BMSCs with the screened concentration of nanoflowers, the biocompatibility of the nanoflowers was verified through live/dead cell staining, scratch assay, and cytoskeleton staining. The antioxidant capacity was assessed by using reactive oxygen species (ROS) fluorescence staining. The in vitro osteoinductive ability was evaluated via alkaline phosphatase (ALP) staining, alizarin red staining, and immunofluorescence staining of osteocalcin (OCN) and Runt-related transcription factor 2 (RUNX2). All the above indicators were compared with the control group of normally cultured BMSCs without the addition of nanoflowers.
RESULTS:
Scanning electron microscopy revealed that the prepared nanoflowers exhibited a flower-like structure; transmission electron microscopy scans discovered that the nanoflowers possessed a multi-layered structure, and high-magnification images displayed continuous atomic arrangements, with the nanoflower diameter measuring (2.00±0.25) μm; energy-dispersive spectroscopy indicated that the nanoflowers contained elements such as C, N, O, P, and Ca, which were uniformly distributed across the flower region; Fourier transform infrared spectroscopy analyzed the absorption peaks of each component, demonstrating the successful preparation of the nanoflowers. Through CCK-8 screening, the concentrations of 0.8, 1.2, and 1.6 mg/mL were selected for subsequent experiments. The live/dead cell staining showed that nanoflowers at different concentrations exhibited good cell compatibility, with the 1.2 mg/mL concentration being the best (P<0.05). The scratch assay results indicated that the cell migration ability in the 1.2 mg/mL group was superior to the other groups (P<0.05). The cytoskeleton staining revealed that the cell morphology was well-extended in all concentration groups, with no significant difference compared to the control group. The ROS fluorescence staining demonstrated that the ROS fluorescence in all concentration groups decreased compared to the control group after lipopolysaccharide induction (P<0.05), with the 1.2 mg/mL group showing the weakest fluorescence. The ALP staining showed blue-purple nodular deposits around the cells in all groups, with the 1.2 mg/mL group being significantly more prominent. The alizarin red staining displayed orange-red mineralized nodules around the cells in all groups, with the 1.2 mg/mL group having more and denser nodules. The immunofluorescence staining revealed that the expressions of RUNX2 and OCN proteins in all concentration groups increased compared to the control group, with the 1.2 mg/mL group showing the strongest protein expression (P<0.05).
CONCLUSION
The study successfully prepares nanoflowers, among which the 1.2 mg/mL nanoflowers exhibits excellent cell compatibility, antioxidant properties, and osteogenic induction capability, demonstrating their potential as an artificial bone substitute material.
Animals
;
Osteogenesis/drug effects*
;
Mesenchymal Stem Cells/drug effects*
;
Calcium Phosphates/pharmacology*
;
Rats, Sprague-Dawley
;
Rats
;
Antioxidants/chemistry*
;
Cells, Cultured
;
Cell Differentiation/drug effects*
;
Nanostructures/chemistry*
;
Tissue Engineering/methods*
;
Bone Marrow Cells/cytology*
;
Coculture Techniques
;
Tissue Scaffolds/chemistry*
;
Male
;
Biocompatible Materials/chemistry*
;
Cell Survival
;
Core Binding Factor Alpha 1 Subunit/metabolism*
;
Cell Proliferation

Result Analysis
Print
Save
E-mail