1.Expression of BTLA/HVEM axis in hematological and prospects for immune target therapy.
Xiaowan LI ; Li ZHANG ; Zuxi FENG ; Yue CHEN ; Xiaofeng ZHU ; Liansheng ZHANG ; Lijuan LI
Chinese Journal of Cellular and Molecular Immunology 2025;41(1):64-70
B and T lymphocyte attenuator (BTLA) is an inhibitory immune checkpoint, which typically interacts with herpesvirus entry mediator (HVEM) and plays a crucial role in regulating immune balance. BTLA interacts with its ligand HVEM in a cis manner on the surface of the same immune cell to maintain immune tolerance, while trans interactions on the surface of different immune cells mediate immunosuppressive effects. Dysregulation of the BTLA/HVEM axis can impair the functions of immune cells, particularly T lymphocytes, promoting immune escape of tumor cells and ultimately leading to tumor progression. Researchers have found that BTLA and HVEM are abnormally expressed in various tumors and are associated with prognosis, suggesting that they may be potential targets for tumor immunotherapy. This review summarizes the molecular structures of BTLA and HVEM, immunomodulatory mechanisms, recent advances in hematologic malignancies, potential inhibitors of BTLA/HVEM interaction, and their applications in immunotherapy for hematologic malignancies.
Humans
;
Receptors, Tumor Necrosis Factor, Member 14/chemistry*
;
Receptors, Immunologic/immunology*
;
Hematologic Neoplasms/genetics*
;
Immunotherapy/methods*
;
Animals
2.Research Progress of Long Non-Coding RNA in Hematological Tumors --Review.
Feng LI ; Fei-Fei YANG ; Yan-Li XU
Journal of Experimental Hematology 2023;31(1):306-310
Long non-coding RNA (lncRNA) is a hot topic in the field of researching tumor pathogenesis, and the importance in hematologic malignancies has been gradually being elucidated. LncRNA not only regulates hematological tumorigenesis and progression through affecting various biological processes such as cell proliferation, differentiation, pluripotency and apoptosis; moreover, abnormal expression and mutation of lncRNA are closely related to drug resistance and prognosis. Thus lncRNA can be used as novel biomarker and potential therapeutic target for hematological tumors. In this review, we will focus on the latest progress of lncRNA in hematological tumors to provide new ideas for the clinical diagnosis, prognostic evaluation together with research and development of target drugs for hematologic malignancies.
Humans
;
RNA, Long Noncoding/metabolism*
;
Hematologic Neoplasms/genetics*
;
Neoplasms
;
Carcinogenesis/pathology*
;
Cell Transformation, Neoplastic/genetics*
;
Gene Expression Regulation, Neoplastic
3.Clinical development of chimeric antigen receptor-T cell therapy for hematological malignancies.
Chinese Medical Journal 2023;136(19):2285-2296
Cellular therapies have revolutionized the treatment of hematological malignancies since their conception and rapid development. Chimeric antigen receptor (CAR)-T cell therapy is the most widely applied cellular therapy. Since the Food and Drug Administration approved two CD19-CAR-T products for clinical treatment of relapsed/refractory acute lymphoblastic leukemia and diffuse large B cell lymphoma in 2017, five more CAR-T cell products were subsequently approved for treating multiple myeloma or B cell malignancies. Moreover, clinical trials of CAR-T cell therapy for treating other hematological malignancies are ongoing. Both China and the United States have contributed significantly to the development of clinical trials. However, CAR-T cell therapy has many limitations such as a high relapse rate, adverse side effects, and restricted availability. Various methods are being implemented in clinical trials to address these issues, some of which have demonstrated promising breakthroughs. This review summarizes developments in CAR-T cell trials and advances in CAR-T cell therapy.
Humans
;
Receptors, Chimeric Antigen
;
Receptors, Antigen, T-Cell/genetics*
;
Immunotherapy, Adoptive/adverse effects*
;
Hematologic Neoplasms/therapy*
;
Multiple Myeloma/etiology*
;
Cell- and Tissue-Based Therapy
4.Clinical significance of PDGFRβ gene testing in hematological tumors.
Mengqiao GUO ; Fangyu GUO ; Yan ZHANG ; Hui CHENG ; Gusheng TANG ; Zhengxia HUANG ; Shenglan GONG
Chinese Journal of Medical Genetics 2023;40(11):1334-1339
OBJECTIVE:
To explore the clinical and laboratory characteristics of hematological tumors with different types of abnormalities in platelet derived growth factor β (PDGFRβ) gene.
METHODS:
A retrospective analysis was carried out on 141 patients with abnormal long arm of chromosome 5 (5q) and comprehensive medical history data from Changhai Hospital Affiliated to Naval Medical University from 2009 to 2020, and their clinical data were collected. R-banding technique was used for chromosomal karyotyping analysis for the patient's bone marrow, and fluorescence in situ hybridization (FISH) was used to detect the PDGFRβ gene. The results of detection were divided into the amplification group, deletion group, and translocation group based on FISH signals. The three sets of data column crosstabs were statistically analyzed, and if the sample size was n >= 40 and the expected frequency T for each cell was >= 5, a Pearson test was used to compare the three groups of data. If N < 40 and any of the expected frequency T for each cell was < 5, a Fisher's exact test is used. Should there be a difference in the comparison results between the three sets of data, a Bonferroni method was further used to compare the data.
RESULTS:
In total 98 patients were detected to have PDGFRβ gene abnormalities with the PDGFRβ probe, which yielded a detection rate of 69.50% (98/141). Among these, 38 cases (38.78%) had PDGFRβ gene amplifications, 57 cases (58.16%) had deletions, and 3 (3.06%) had translocations. Among the 98 cases, 93 were found to have complex karyotypes, including 37 cases from the amplification group (97.37%, 37/38), 55 cases from the deletion group (96.49%, 55/57), and 1 case from the translocation group (33.33%, 1/3). Analysis of three sets of clinical data showed no significant gender preponderance in the groups (P > 0.05). The PDGFRβ deletion group was mainly associated with myeloid tumors, such as acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) (P < 0.001). The PDGFRβ amplification group was more common in lymphoid tumors, such as multiple myeloma (MM) (P < 0.001). The PDGFRβ translocation group was also more common in myelodysplastic/myeloproliferative tumors (MDS/MPN).
CONCLUSION
Tumors with PDGFRβ gene rearrangement may exhibit excessive proliferation of myeloproliferative tumors (MPN) and pathological hematopoietic changes in the MDS, and have typical clinical and hematological characteristics. As a relatively rare type of hematological tumor, in addition to previously described myeloid tumors such as MPN or MDS/MPN, it may also cover lymphoid/plasma cell tumors such as multiple myeloma and non-Hodgkin's lymphoma.
Humans
;
Clinical Relevance
;
Hematologic Neoplasms/genetics*
;
In Situ Hybridization, Fluorescence
;
Multiple Myeloma
;
Myelodysplastic Syndromes
;
Retrospective Studies
;
Translocation, Genetic
5.Recent Research Progress on CircRNA in Hematological Malignancies--Review.
Xue BAI ; Xiao-Feng CHEN ; Zhong-Yu LI ; Meng WANG ; Jia-Jia LI
Journal of Experimental Hematology 2023;31(3):927-930
Most hematological tumors have high-grade malignancy and low cure rate, requiring new molecular markers for detection and evaluation. Circular RNAs (circRNAs) are a class of non-coding RNAs with covalently closed-loop structures, which participate in gene transcription and translation by binding to microRNAs and proteins. In recent years, with the deepening research on circRNAs, circRNAs have been found to play an important role in hematological malignancies. In this review, the latest research progress on the function and molecular mechanism of circRNAs in hematological malignancies was systematically summarized, and it was found that circRNAs may be potential new biomarkers and therapeutic targets in hematological malignancies.
Humans
;
RNA, Circular
;
MicroRNAs/genetics*
;
Neoplasms
;
Hematologic Neoplasms/genetics*
;
Biomarkers
6.The Latest Research Progress on Myelodysplastic Syndrome Patient-derived Mesenchymal Stem Cell--Review.
Fan LI ; Hai-Ping HE ; Li-Hua ZHANG ; Xiao-Sui LING
Journal of Experimental Hematology 2022;30(4):1286-1290
Myelodysplastic syndrome (MDS) are a heterogeneous group of hematological malignancies. Currently, in addition to demethylated chemotherapy and hematopoietic stem cell transplantation, MDS patient-derived mesenchymal stem cells (MDS-MSC) play an important role in understanding the pathogenesis of MDS and related therapeutic targets. For example, abnormal expression of DICER1 gene, abnormalities of PI3K/AKT and Wnt/β-catenin signaling pathways provide new therapeutic targets for MDS. In addition, MDS-MSC is also affected by abnormal microenvironment of the body, such as inflammatory factor S100A9, as well as hypercoagulation and iron overload. In this review, genes, signaling pathways, cytokines, hematopoietic microenvironment, and the effect of therapeutic drugs for MDS-MSC were briefly summarized.
Cytokines/metabolism*
;
DEAD-box RNA Helicases/metabolism*
;
Hematologic Neoplasms/metabolism*
;
Humans
;
Mesenchymal Stem Cells
;
Myelodysplastic Syndromes/genetics*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Ribonuclease III/metabolism*
;
Tumor Microenvironment
7.Research Progress of m6A Methylation Modification in Hematological Tumors--Review.
Feng LI ; Fei-Fei YANG ; Yan-Li XU
Journal of Experimental Hematology 2022;30(5):1607-1611
N6-methyladenosine (m6A) is one of the most common epigenetic modifications of eukaryotic mRNAs, which is involved in the regulation of gene expressions and biological processes in a variety of cells with dynamic and reversible methylation processes. In recent years, many studies have shown that m6A methylation modification not only acts on the growth, proliferation, and medullary differentiation of acute myeloid leukemia cells, but also participates in the regulation of the proliferation and apoptosis of other hematological tumor cells such as chronic myeloid leukemia and diffuse large B-cell lymphoma, and it can even weaken the efficacy of anti-hematological tumor immunotherapy and induce immune escape leading to tumor resistance. With the successive development of a variety of m6A methylation-related enzyme inhibitors, it will provide new therapeutic ideas for patients with relapsed and refractory hematological tumors. In this paper, we review the research progress on the mechanism of m6A methylation on the occurrence, development, and tumor immunity of various hematological tumors.
Adenosine/metabolism*
;
Epigenesis, Genetic
;
Hematologic Neoplasms/genetics*
;
Humans
;
Methylation
;
Neoplasms/metabolism*
;
RNA, Messenger/metabolism*
8.Chinese Medicine Regulates DNA Methylation to Treat Haematological Malignancies: A New Paradigm of "State-Target Medicine".
Feng-Lin SHEN ; Yan-Na ZHAO ; Xiao-Ling YU ; Bo-Lin WANG ; Xiao-Long WU ; Gao-Chen LAN ; Rui-Lan GAO
Chinese journal of integrative medicine 2022;28(6):560-566
Aberrant regulation of DNA methylation plays a crucial causative role in haematological malignancies (HMs). Targeted therapy, aiming for DNA methylation, is an effective mainstay of modern medicine; however, many issues remain to be addressed. The progress of epigenetic studies and the proposed theory of "state-target medicine" have provided conditions to form a new treatment paradigm that combines the "body state adjustment" of CM with targeted therapy. We discussed the correlation between Chinese medicine (CM) syndromes/states and DNA methylation in this paper. Additionally, the latest research findings on the intervention and regulation of DNA methylation in HMs, including the core targets, therapy status, CM compounds and active components of the Chinese materia medica were concisely summarized to establish a theoretical foundation of "state-target synchronous conditioning" pattern of integrative medicine for HMs, simultaneously leading a new perspective in clinical diagnosis and therapy.
DNA Methylation/genetics*
;
Drugs, Chinese Herbal
;
Hematologic Neoplasms/genetics*
;
Humans
;
Materia Medica
;
Medicine, Chinese Traditional
9.Fanconi anemia gene-associated germline predisposition in aplastic anemia and hematologic malignancies.
Daijing NIE ; Jing ZHANG ; Fang WANG ; Xvxin LI ; Lili LIU ; Wei ZHANG ; Panxiang CAO ; Xue CHEN ; Yang ZHANG ; Jiaqi CHEN ; Xiaoli MA ; Xiaosu ZHOU ; Qisheng WU ; Ming LIU ; Mingyue LIU ; Wenjun TIAN ; Hongxing LIU
Frontiers of Medicine 2022;16(3):459-466
Whether Fanconi anemia (FA) heterozygotes are predisposed to bone marrow failure and hematologic neoplasm is a crucial but unsettled issue in cancer prevention and family consulting. We retrospectively analyzed rare possibly significant variations (PSVs) in the five most obligated FA genes, BRCA2, FANCA, FANCC, FANCD2, and FANCG, in 788 patients with aplastic anemia (AA) and hematologic malignancy. Sixty-eight variants were identified in 66 patients (8.38%). FANCA was the most frequently mutated gene (n = 29), followed by BRCA2 (n = 20). Compared with that of the ExAC East Asian dataset, the overall frequency of rare PSVs was higher in our cohort (P = 0.016). BRCA2 PSVs showed higher frequency in acute lymphocytic leukemia (P = 0.038), and FANCA PSVs were significantly enriched in AA and AML subgroups (P = 0.020; P = 0.008). FA-PSV-positive MDS/AML patients had a higher tumor mutation burden, higher rate of cytogenetic abnormalities, less epigenetic regulation, and fewer spliceosome gene mutations than those of FA-PSV-negative MDS/AML patients (P = 0.024, P = 0.029, P = 0.024, and P = 0.013). The overall PSV enrichment in our cohort suggests that heterozygous mutations of FA genes contribute to hematopoietic failure and leukemogenesis.
Anemia, Aplastic/genetics*
;
Epigenesis, Genetic
;
Fanconi Anemia/genetics*
;
Germ Cells
;
Hematologic Neoplasms/genetics*
;
Humans
;
Leukemia, Myeloid, Acute/genetics*
;
Retrospective Studies
10.Characteristic of 8p11 Myeloproliferative Syndrome with Rare Phenotype.
Song XUE ; Huan-Xia XU ; Yong-Ping ZHANG ; Fu-Hong LIU ; Yi-Yan LU ; Fang LI ; Yan-Ping WANG ; Cheng-Cheng WANG ; Xiao-Peng JIA ; Jing-Bo WANG
Journal of Experimental Hematology 2021;29(1):181-187
OBJECTIVE:
To deeply understand the clinical manifestation, laboratory examination characteristics, diagnosis and treatment of an eight p11 myeloproliferative syndrome (EMS) with rare phenotypes.
METHODS:
The clinical and laboratory characteristics and the process of allogeneic hematopoietic stem cell transplantation (allo-HSCT) were summarized in 1 rare EMS case involving T/B/myeloid cells. Meanwhile, 2 similar cases in the previous literature were also discussed.
RESULTS:
The bone marrow examination indicated that the patient with B-cell acute lymphocytic leukemia. The lymph node biopsy showed that the patient was T lymphoblastic/myeloid lymphoma. The 8p11 abnormality was found by the examination of bone marrow chromosomes. The RT-PCR examination showed that the BCR-ABL fused gene was negtive. The FGFR1 breakage was found by using the FISH with FGFR1 probe in lymph node. The Mutation of FMNL3, NBPF1 and RUNX1 genes was found by using the whole exome sequencing. The patient received allo-HSCT under CR2. By the follow-up till to September 2019, the patient survived without the above-mentioned disease.
CONCLUSION
EMS manifest as neoplasms involving T-lineage, B-lineage, and myeloid-lineage simultaneously is extremely rare. Although the FGFR1 gene-targeted therapy can be conducted, allo-HSCT should be actively considered.
Bone Marrow
;
Chromosomes, Human, Pair 8
;
Formins
;
Hematologic Neoplasms
;
Humans
;
Myeloproliferative Disorders/genetics*
;
Phenotype
;
Receptor, Fibroblast Growth Factor, Type 1/genetics*
;
Translocation, Genetic

Result Analysis
Print
Save
E-mail