1.Helicobacter pylori infection status and evolution of gastric cancer.
Wenlin ZHANG ; Yuxin ZHANG ; Jing NING ; Weiwei FU ; Shigang DING
Chinese Medical Journal 2025;138(23):3083-3096
Gastric cancer (GC) is a globally prevalent malignancy with a particularly heavy burden in China. Helicobacter pylori ( H. pylori ) is a Group I carcinogen for GC, with a higher seroprevalence rate indicating a higher GC incidence. However, only approximately 3% of the individuals with H. pylori infection eventually develop GC, and about 2.6% still progress to GC even 10-20 years after the eradication of H. pylori . Thus, the pathogenic mechanism of H. pylori for GC must be elucidated, and high-risk individuals precisely identified. Furthermore, GC can occur even in individuals who have never been infected with H. pylori . As H. pylori infection rates decline, the proportion of H. pylori -negative GC cases is increasing annually, gaining significant research attention. In this review, potential pathogenic mechanisms of H. pylori infection are explored from the aspects of H. pylori virulence factors and host factors (genetic susceptibility and immune microenvironment). Possible risk factors for H. pylori -negative GC include infections by other microorganisms (e.g., bacteria, fungi, and viruses), autoimmune gastritis, bile reflux, genetic mutations, and environmental factors. We aim to review the potential mechanisms for GC with varying H. pylori infection statuses, identify the high-risk individuals, and pose questions that need to be addressed. In the future, as the prevalence of H. pylori infection gradually decreases, GC prevention and management must evolve to address host-specific factors and the growing challenge of H. pylori -negative GC by integrating multidisciplinary perspectives.
Stomach Neoplasms/genetics*
;
Humans
;
Helicobacter Infections/complications*
;
Helicobacter pylori/pathogenicity*
;
Risk Factors
2.Effect of CMTM6 on PD-L1 in Helicobacter pylori infected gastric epithelial cells.
Wei FU ; Jing NING ; Weiwei FU ; Jing ZHANG ; Shigang DING
Journal of Peking University(Health Sciences) 2025;57(2):245-252
OBJECTIVE:
To explore the changes of CKLF-like MARVEL transmembrane domain-containing 6 (CMTM6) and programmed death-ligand 1 (PD-L1) expression in gastric mucosal epithelial cells after Helicobacter pylori infection and the regulation of CMTM6 on PD-L1, and to analyze the mRNA expression differences before and after CMTM6 gene knock-out in helicobacter pylori infected gastric epithelial cells by microarray analysis.
METHODS:
The standard Helicobacter pylori strain ATCC 26695 was co-cultured with human gastric epithelial cell GES-1 for 6, 24 and 48 hours, and the mRNA and protein levels of CMTM6 and PD-L1 were detected by real-time quantitative PCR and Western blot. Using CRISPR/Cas9 to construct CMTM6 gene knockout plasmid and knockout CMTM6 gene of GES-1 cells. Helicobacter pylori was co-cultured with CMTM6 gene knockout and wild type GES-1 cells for 48 hours to detect PD-L1 transcription and protein level changes, and CMTM6 gene knockout GES-1 cells were treated with the proteasome inhibitor MG-132 to detect the changes in PD-L1 protein levels. Agilent Human ceRNA Microarray 2019 was used to detect the differentially expressed genes in CMTM6 gene knockout and wild-type GES-1 cells co-cultured with Hp for 48 hours, and the signal pathway of differentially expressed genes enrichment was analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG) database.
RESULTS:
The mRNA and protein levels of CMTM6 and PD-L1 in GES-1 cells were significantly up-regulated after Helicobacter pylori infection, and CMTM6 mRNA was most significantly up-regulated 48 hours after infection. After CMTM6 gene knockout, the CD274 gene transcription level of Helicobacter pylori infected GES-1 cells did not change significantly, but PD-L1 protein level was significantly down-regulated, and the PD-L1 level increased after the application of proteasome inhibitor MG-132. After CMTM6 gene knockout, 67 genes had more than two times of differential expression. The transcription levels of TMEM68, FERMT3, GPR142, ATP6V1FNB, NOV, UBE2S and other genes were significantly down-regulated. The transcription levels of PCDHGA6, CAMKMT, PDIA2, NTRK3, SPOCK1 and other genes were significantly up-regulated. After CMTM6 gene knockout, ubiquitin-conjugating enzyme E2S (UBE2S) gene expression was significantly down-regulated, which might affect protein ubiquitination degradation. After CMTM6 gene knockout, adrenoceptor alpha 1B (ADRA1B), cholinergic receptor muscarinic 1 (M1), CHRM1, platelet activating factor receptor (PTAFR) gene expression was significantly up-regulated.
CONCLUSION
Helicobacter pylori infection up-regulates the expression level of CMTM6 in gastric mucosa cells, and CMTM6 can stabilize PD-L1 and maintain the protein level of PD-L1. CMTM6 gene knockout may affect biological behaviors such as protein ubiquitination and cell surface receptor expression.
Humans
;
MARVEL Domain-Containing Proteins/metabolism*
;
Helicobacter pylori/physiology*
;
B7-H1 Antigen/genetics*
;
Helicobacter Infections/metabolism*
;
Epithelial Cells/metabolism*
;
Gastric Mucosa/metabolism*
;
Chemokines/metabolism*
;
Cell Line
;
Gene Knockout Techniques
;
Myelin Proteins
3.Multidrug resistance of Helicobacter pylori and its impact on the diagnosis and treatment of gastrointestinal diseases and countermeasures.
Xiya YAN ; Canlin ZHENG ; Zhihui TANG ; Youjun FENG ; Baoning WANG
Chinese Journal of Biotechnology 2025;41(4):1240-1251
Helicobacter pylori is a bacterium that can cause chronic gastritis, peptic ulcers, and other gastrointestinal diseases. The World Health Organization has classified H. pylori as a group Ⅰ carcinogen. Antibiotics are the primary clinical approach for eradicating H. pylori. However, incomplete eradication of H. pylori by antibiotics can lead to persistent infection, which is a major risk factor for the high incidence of gastric cancer. The widespread use of antibiotics has led to the emergence of multidrug resistance in H. pylori, contributing to treatment failures of chronic gastric diseases and increasing the risk of spreading resistant strains. Multidrug-resistant H. pylori has become a serious challenge in the diagnosis and treatment of gastrointestinal diseases. This paper reviews the global trends in the development of multidrug resistance in H. pylori, the underlying mechanisms, the challenges it poses to clinical diagnosis, and its impact on drug development, drawing on relevant literature and the research findings from our group. It proposes using cgt expression as a novel method for determining viable bacteria, identifying intracellularization as a new form of resistance in H. pylori, and exploring the potential of O-glycans as a therapeutic approach against H. pylori to address multidrug resistance. It provides new insights into understanding the mechanisms of H. pylori multidrug resistance and its prevention strategies, offering promising directions for future clinical treatments and antimicrobial drug development.
Helicobacter pylori/genetics*
;
Humans
;
Drug Resistance, Multiple, Bacterial
;
Helicobacter Infections/microbiology*
;
Anti-Bacterial Agents/therapeutic use*
;
Gastrointestinal Diseases/drug therapy*
4.Screening and obataining of aptamers for the blood group antigen-binding adhesin (BabA) to block Helicobacter pylori (H.pylori) colonization in the stomach of mice.
Yuan YUAN ; Weipeng LI ; Xiaojing ZHOU ; Weili SUN ; Xiaolei TANG
Chinese Journal of Cellular and Molecular Immunology 2023;39(9):793-800
Objective To explore the aptamer specific binding blood group antigen-binding adhesin (BabA) of Helicobacter pylori (H.pylori) for blocking of H.pylori adhering host cell. Methods H.pylori strain was cultured and its genome was extracted as templates to amplify the BabA gene by PCR with designed primers. The BabA gene obtained was cloned and constructed into prokaryotic expression plasmid, which was induced by isopropyl beta-D-galactoside (IPTG) and purified as target. The single stranded DNA (ssDNA) aptamers that specifically bind to BabA were screened by SELEX. Enzyme-linked oligonucleotide assay (ELONA) was used to detect and evaluate the characteristics of candidate aptamers. The blocking effect of ssDNA aptamers on H.pylori adhesion was subsequently verified by flow cytometry and colony counting at the cell level in vitro and in mouse model of infection, respectively. Meanwhile, the levels of cytokines, interleukin 6 (IL-6), IL-8, tumor necrosis factor α (TNF-α), IL-10 and IL-4 in the homogenate of mouse gastric mucosa cells were detected by ELISA. Results The genome of H.pylori ATCC 43504 strains was extracted and the recombinant plasmid pET32a-BabA was constructed. After induction and purification, the relative molecular mass (Mr) of the recombinant BabA protein was about 39 000. The amino acid sequence of recombinent protein was consistent with BabA protein by peptide mass fingerprint (PMF). Five candidate aptamers were selected to bind to the above recombinent BabA protein by SELEX. The aptamers A10, A30 and A42 identified the same site, while A3, A16 and the above three aptamers identified different sites respectively. The aptamer significantly blocked the adhesion of H.pylori in vitro. Animal model experiments showed that the aptamers can block the colonization of H.pylori in gastric mucosa by intragastric injection and reduce the inflammatory response. The levels of IL-4, IL-6, IL-8 and TNF-α in gastric mucosal homogenates in the model group with aptamer treatment were lower than that of model group without treatment. Conclusion Aptamers can reduce the colonization of H.pylori in gastric mucosa via binding BabA to block the adhesion between H.pylori and gastric mucosal epithelial cells.
Animals
;
Mice
;
Helicobacter pylori/genetics*
;
Interleukin-4
;
Interleukin-6
;
Interleukin-8
;
Tumor Necrosis Factor-alpha
;
Stomach
;
Oligonucleotides
;
Adhesins, Bacterial/genetics*
;
Blood Group Antigens
5.Helicobacter pylori promotes gastric cancer metastasis via up-regulating the expression of Bmi-1.
Xiaolei TANG ; Ying HUA ; Sheng LI ; Baijing DING
Chinese Journal of Cellular and Molecular Immunology 2023;39(6):532-538
Objective To clarify whether Helicobacter pylori (H. pylori) can promote metastasis of gastric cancer cells via the high-expression of induced B cell specific Moloney murine leukemia virus integration site 1 (Bmi-1). Methods The gastric cancer tissue specimens from 82 patients were collected for this study. The protein and gene expression level of Bmi-1 in gastric adenocarcinoma tissue were detected by immunohistochemistry and real time quantitative PCR, respectively. And meanwhile the correlation between Bmi-1 levels and pathological features, and prognosis of gastric cancer were analyzed retrospectively. Then, the GES-1 cells were transfected with pLPCX-Bmi-1 plasmid and infected with H. pylori respectively. After the Bmi-1 overexpression in GES-1 cells, the invasion ability of the GES-1 cells was detected by Transwell assay, and the cell cycle and apoptosis were detected by flow cytometry. Results The mRNA and protein of Bmi-1 expression in gastric cancer tissues were higher than tumor-adjacent tissue, and the high expression of Bmi-1 was positively correlated with tumor invasion, TNM stage, tumor differentiation, lymph node metastasis and H. pylori infection. When expression of Bmi-1 was up-regulated as a result of H.pylori infection or pLPCX-Bmi-1 transfection, the GES-1 cells had higher invasiveness and lower apoptosis rate with the above treatment respectively. Conclusion H. pylori infection can inhibit the apoptosis of gastric cancer cells and promote their invasion via up-regulating expression of Bmi-1.
Humans
;
Cell Line, Tumor
;
Helicobacter Infections/genetics*
;
Helicobacter pylori
;
Lymphatic Metastasis
;
Retrospective Studies
;
Stomach Neoplasms/pathology*
;
Polycomb Repressive Complex 1/genetics*
6.Research progress of Helicobacter pylori vaccine.
Ying ZHANG ; Kexin LI ; Yanna BI ; Xiaoya LI ; Baoen SHAN ; Dailun HU ; Lianmei ZHAO
Chinese Journal of Cellular and Molecular Immunology 2023;39(6):564-570
Helicobacter pylori (Hp) is one of most common pathogens causing gastrointestinal disorder including gastric ulcer, duodenal ulcer and gastric cancer, etc. It has been verified as class I carcinogen by WHO. Nowadays, combination antibiotics and proton pump inhibitor are mainly used to erase Hp in clinical application. However, with the increased resistance of Hp, the vaccine against Hp might become the best strategy to eradicate Hp. Elements including urease, virulence factor, outer membrane protein, flagella, play an important role in Hp infection, colonization and reproduction. They have become potential candidate antigens in the development of Hp vaccine, as reported in previous studies. Presently, these antigens-centric vaccines have been tested in animal models. Therefore, this article reviews the studies on Hp vaccine with urease, virulence genes, outer membrane protein and flagella as their candidate antigens, in an attempt to provide insights for research in this regard.
Animals
;
Helicobacter pylori
;
Urease/genetics*
;
Helicobacter Infections/prevention & control*
;
Vaccines
;
Membrane Proteins
7.The relationship between genetic polymorphism of CYP2C19 and the efficacy of Helicobacter pylori eradication therapy in children.
Ling Ling LUO ; Bo CHEN ; Xiao Li SHU ; Wei ZHENG ; Gao LONG ; Mi Zu JIANG
Chinese Journal of Pediatrics 2023;61(7):600-605
Objective: To investigate the relationship between genetic polymorphisms of cytochrome P450 2C19 (CYP2C19) and the efficacy of Helicobacter pylori (Hp) eradication therapy in children. Methods: The retrospective cohort study was conducted on 125 children with gastroscopy and positive rapid urease test (RUT) from September 2016 to December 2018 who presented to the Children's Hospital of Zhejiang University School of Medicine due to gastrointestinal symptoms including nausea, vomiting, abdominal pain, bloating, acid reflux, heartburn, chest pain, vomiting blood and melena. Hp culture and drug susceptibility test were carried out with gastric antrum mucosa before treatment. All the patients completed 2 weeks of standardized Hp eradication therapy and had 13C urea breath test 1 month after that, which was used to evaluate the curative effect. The DNA of gastric mucosa after RUT was analyzed and CYP2C19 gene polymorphism was detected. Children were grouped according to metabolic type. Combined with the results of Hp culture and drug susceptibility, the relationship between CYP2C19 gene polymorphism and the efficacy of Hp eradicative treatment was analyzed in children. Chi square test was used for row and column variables, and Fisher exact test was used for comparison between groups. Results: One hundred and twenty five children were enrolled in the study, of whom 76 were males and 49 females. The genetic polymorphism of CYP2C19 in these children found poor metabolizer (PM) of 30.4% (38/125), intermediate metabolizer (IM) of 20.8% (26/125), normal metabolizer (NM) of 47.2% (59/125), rapid metabolizer (RM) of 1.6% (2/125), and ultrarapid metabolizer (UM) of 0. There were statistically significant in positive rate of Hp culture among these groups (χ2=124.00, P<0.001). In addition, the successful rates of Hp eradication in PM, IM, NM and RM genotypes were 84.2% (32/38), 53.8% (14/26), 67.8% (40/59), and 0, respectively, with significant differences (χ2=11.35, P=0.010); those in IM genotype was significantly lower than that in PM genotype (P=0.011). With the same standard triple Hp eradicative regimen, the successful rate of Hp eradication for IM type was 8/19, which was lower than that of PM (80.0%, 24/30) and NM type (77.3%, 34/44) (P=0.007 and 0.007, respectively). There was a significant difference in the efficacy of Hp eradication treatment among different genotypes (χ2=9.72, P=0.008). According to the clarithromycin susceptibility result, the successful rate of Hp eradication treatment for IM genotype was 4/15 in the sensitive group and 4/4 in the drug-resistant group (χ2=6.97, P=0.018). Conclusions: The genetic polymorphism of CYP2C19 in children is closely related to the efficacy of Hp eradication treatment. PM has a higher successful rate of eradication treatment than the other genotypes.
Female
;
Male
;
Humans
;
Child
;
Cytochrome P-450 CYP2C19/genetics*
;
Helicobacter pylori
;
Retrospective Studies
;
Genotype
;
Abdominal Pain
8.The effect of Helicobacter pylori infection on duodenal bulbar microbiota in children with duodenal ulcer.
Wei ZHENG ; Ke Rong PENG ; Fu Bang LI ; Hong ZHAO ; Mi Zu JIANG
Chinese Journal of Pediatrics 2023;61(1):49-55
Objective: To investigate the characteristics of duodenal bulbar microbiota in children with duodenal ulcer and Helicobacter pylori (Hp) infection. Methods: This prospective cohort study enrolled 23 children with duodenal ulcers diagnosed by gastroscopy who were admitted to the Children's Hospital of Zhejiang University School of Medicine due to abdominal pain, abdominal distension, and vomiting from January 2018 to August 2018. They were divided into Hp-positive and Hp-negative groups according to the presence or absence of Hp infection. Duodenal bulbar mucosa was sampled to detect the bacterial DNA by high-throughput sequencing. The statistical difference in α diversity and β diversity, and the relative abundance in taxonomic level between the two groups were compared. Microbial functions were predicted using the software PICRUSt. T-test, Rank sum test or χ2 test were used for comparison between the two groups. Results: A total of 23 children diagnosed with duodenal ulcer were enrolled in this study, including 15 cases with Hp infection ((11.2±3.3) years of age, 11 males and 4 females) and 8 cases without Hp infection ((10.1±4.4) years of age, 6 males and 2 females). Compared with Hp-negative group, the Hp-positive group had higher Helicobacter abundance (0.551% (0.258%, 5.368%) vs. 0.143% (0.039%, 0.762%), Z=2.00, P=0.045) and lower abundance of Fusobacterium, Streptococcus and unclassified- Comamonadaceae (0.010% (0.001%, 0.031%) vs. 0.049% (0.011%, 0.310%), Z=-2.24, P=0.025; 0.031% (0.015%, 0.092%) vs. 0.118% (0.046%, 0.410%), Z=-2.10, P=0.036; 0.046% (0.036%, 0.062%) vs. 0.110% (0.045%, 0.176%), Z=-2.01, P=0.045). Linear discriminant analysis (LDA) effect sized showed that at the genus level, only Helicobacter was significantly enriched in Hp-positive group (LDA=4.89, P=0.045), while Streptococcus and Fusobacterium significantly enriched in Hp-negative group (LDA=3.28, 3.11;P=0.036,0.025, respectively). PICRUSt microbial function prediction showed that the expression of oxidative phosphorylation and disease-related pathways (pathways in cancer, renal cell carcinoma, amoebiasis, type 1 diabetes mellitus) in Hp-positive group were significantly higher than that in Hp-negative group (all P<0.05), while the expression of pathways such as energy metabolism and phosphotransferase system pathways were significantly lower than that in Hp-negative group (all P<0.05). Conclusion: In children with Hp-infected duodenal ulcers, the mucosal microbiota of the duodenal bulb is altered, characterized by an increased abundance of Helicobacter and a decreased abundance of Clostridium and Streptococcus, and possibly alters the biological function of the commensal microbiota through specific metabolic pathways.
Male
;
Female
;
Humans
;
Child
;
Duodenal Ulcer/diagnosis*
;
Helicobacter Infections/complications*
;
Helicobacter pylori/genetics*
;
Prospective Studies
;
Microbiota
9.The association between Helicobacter pylori virulence factor genotypes and gastroduodenal diseases in children.
Jing Jing YING ; Xiao Li SHU ; Gao LONG ; Mi Zu JIANG
Chinese Journal of Pediatrics 2023;61(9):827-832
Objective: To investigate the association between Helicobacter pylori (Hp) virulence factor genotypes and the degree and activity of gastric mucosa pathological changes in pediatric gastroduodenal diseases. Methods: This retrospective cohort study was conducted from May 2020 to October 2020. The frozen strains of Hp, which were cultured with the gastric mucosa of 68 children with gastroscopy confirmed gastroduodenal diseases who visited the children's hospital of Zhejiang University School of Medicine from April 2012 to December 2014, were resuscitated. After extracting DNA from these Hp strains, PCR amplification and agarose gel electrophoresis were performed to determine the detection rate of cytotoxin-associated protein A (cagA),vacuolating cytotoxin A (vacA)(s1a、s1b/s2,m1/m2), outer inflammatory protein A (oipA),blood group antigen binding adhesin (babA),duodenal ulcer promoting protein A (dupA) genes; oipA genes were sequenced to determine the gene status. The patients were divided into different groups according to the findings of gastroscopy and gastric mucosa pathology. The detection rates of various virulence factor genotypes among different groups were compared using χ2 tests or Fisher's exact tests. Results: The 68 Hp strains all completed genetic testing. According to the diagnostic findings of gastroscopy, the 68 cases were divided into 47 cases of superficial gastritis and 21 cases of peptic ulcer. Regarding the pathological changes of gastric mucosa, 8 cases were mild, and 60 cases were moderate and severe according to the degree of inflammation; 61 cases were active and 7 cases inactive according to the activity of inflammation. The overall detection rates of cagA, vacA, vacA s1/m2, functional oipA, babA2, and dupA virulence factor genes were 100% (68/68), 100% (68/68), 94% (64/68), 99% (67/68), 82% (56/68), and 71% (48/68), respectively. In the superficial gastritis group, their detection rates were 100% (47/47), 100% (47/47), 96% (45/47), 98% (46/47), 81% (38/47), and 70% (33/47), respectively; in the peptic ulcer group, their detection rates were 100% (21/21), 100% (21/21), 90% (19/21), 100% (21/21), 86% (18/21), and 71% (15/21), respectively. There was no statistically significant difference between the two groups (all P>0.05). In the mild gastric mucosa inflammation group, the detection rates of the above six genotypes were 8/8, 8/8, 8/8, 7/8, 7/8, and 5/8, respectively; and in the moderate to severe inflammation groups, the detection rates were 100% (60/60), 100% (60/60), 93% (56/60), 100% (60/60), 82% (49/60), and 72% (43/60), respectively, with no statistically significant difference between the two groups (all P>0.05). In the active inflammation group, the detection rate of six genotypes were 100% (61/61), 100% (61/61), 93% (57/61), 98% (60/61), 82% (50/61), and 72% (44/61), respectively; and in the inactive inflammation group, they were 7/7, 7/7, 7/7, 7/7, 6/7, and 4/7, respectively. Again, there was no statistically significant difference between the two groups (all P>0.05). There was no statistically significant difference in the detection rate of combinations of 4 or 5 virulence factor genes among the different groups (all P>0.05). Conclusions: CagA, vacA, vacA s1/m2, functional oipA, babA2, and dupA genes are not associated with superficial gastritis and peptic ulcer in children, or with the degree and activity of gastric mucosa pathological inflammation. Different gene combinations of cagA, vacA, oipA, babA2, and dupA have no significant effects on predicting the clinical outcome of Hp infection in children.
Humans
;
Child
;
Helicobacter pylori/genetics*
;
Retrospective Studies
;
Genotype
;
Inflammation
;
Gastritis
;
Cytotoxins
10.Evaluation of the Gastric Microbiome in Patients with Chronic Superficial Gastritis and Intestinal Metaplasia.
Ying LIU ; Yong-Jun MA ; Cai-Qun HUANG
Chinese Medical Sciences Journal 2022;37(1):44-51
Objective To evaluate the gastric microbiome in patients with chronic superficial gastritis (CSG) and intestinal metaplasia (IM) and investigate the influence of Helicobacter pylori (H. pylori) on the gastric microbiome. Methods Gastric mucosa tissue samples were collected from 54 patients with CSG and IM, and the patients were classified into the following four groups based on the state of H. pylori infection and histology: H. pylori-negative CSG (n=24), H. pylori-positive CSG (n=14), H. pylori-negative IM (n=11), and H. pylori-positive IM (n=5). The gastric microbiome was analyzed by 16S rRNA gene sequencing. Results H. pylori strongly influenced the bacterial abundance and diversity regardless of CSG and IM. In H. pylori-positive subjects, the bacterial abundance and diversity were significantly lower than in H. pylori-negative subjects. The H. pylori-negative groups had similar bacterial composition and bacterial abundance. The H. pylori-positive groups also had similar bacterial composition but different bacterial relative abundance. The relative abundance of Neisseria, Streptococcus, Rothia, and Veillonella were richer in the I-HP group than in G-HP group, especially Neisseria (t=175.1, P<0.001). Conclusions The gastric microbial abundance and diversity are lower in H. pylori- infected patients regardless of CSG and IM. Compared to H. pylori-positive CSG group and H. pylori-positive IM, the relative abundance of Neisseria, Streptococcus, Rothia, and Veillonella is higher in H. pylori-positive patients with IM than in H. pylori-positive patients with CSG, especially Neisseria.
Gastric Mucosa/microbiology*
;
Gastritis, Atrophic/microbiology*
;
Gastrointestinal Microbiome/genetics*
;
Helicobacter Infections/microbiology*
;
Helicobacter pylori/genetics*
;
Humans
;
Metaplasia
;
RNA, Ribosomal, 16S/genetics*
;
Stomach Neoplasms

Result Analysis
Print
Save
E-mail