1.Early Administration of Nelonemdaz May Improve the Stroke Outcomes in Patients With Acute Stroke
Jin Soo LEE ; Ji Sung LEE ; Seong Hwan AHN ; Hyun Goo KANG ; Tae-Jin SONG ; Dong-Ick SHIN ; Hee-Joon BAE ; Chang Hun KIM ; Sung Hyuk HEO ; Jae-Kwan CHA ; Yeong Bae LEE ; Eung Gyu KIM ; Man Seok PARK ; Hee-Kwon PARK ; Jinkwon KIM ; Sungwook YU ; Heejung MO ; Sung Il SOHN ; Jee Hyun KWON ; Jae Guk KIM ; Young Seo KIM ; Jay Chol CHOI ; Yang-Ha HWANG ; Keun Hwa JUNG ; Soo-Kyoung KIM ; Woo Keun SEO ; Jung Hwa SEO ; Joonsang YOO ; Jun Young CHANG ; Mooseok PARK ; Kyu Sun YUM ; Chun San AN ; Byoung Joo GWAG ; Dennis W. CHOI ; Ji Man HONG ; Sun U. KWON ;
Journal of Stroke 2025;27(2):279-283
2.Quercetin-3-Methyl Ether Induces Early Apoptosis to Overcome HRV1B Immune Evasion, Suppress Viral Replication, and Mitigate Inflammatory Pathogenesis
Jae-Hyoung SONG ; Seo-Hyeon MUN ; Sunil MISHRA ; Seong-Ryeol KIM ; Heejung YANG ; Sun Shim CHOI ; Min-Jung KIM ; Dong-Yeop KIM ; Sungchan CHO ; Youngwook HAM ; Hwa-Jung CHOI ; Won-Jin BAEK ; Yong Soo KWON ; Jae-Hoon CHANG ; Hyun-Jeong KO
Biomolecules & Therapeutics 2025;33(2):388-398
Human rhinovirus (HRV) causes the common cold and exacerbates chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease. Despite its significant impact on public health, there are currently no approved vaccines or antiviral treatments for HRV infection. Apoptosis is the process through which cells eliminate themselves through the systematic activation of intrinsic death pathways in response to various stimuli. It plays an important role in viral infections and serves as a key immune defense mechanism in the interactions between viruses and the host. In the present study, we investigated the antiviral effects of quercetin-3-methyl ether, a flavonoid isolated from Serratula coronata, on human rhinovirus 1B (HRV1B). Quercetin-3-methyl ether significantly inhibited HRV1B replication in HeLa cells in a concentration-dependent manner, thereby reducing cytopathic effects and viral RNA levels. Time-course and time-of-addition analyses confirmed that quercetin-3-methyl ether exhibited antiviral activity during the early stages of viral infection, potentially targeting the replication and translation phases. Gene expression analysis using microarrays revealed that pro-apoptotic genes were upregulated in quercetin-3-methyl ether-treated cells, suggesting that quercetin-3-methyl ether enhances early apoptosis to counteract HRV1B-induced immune evasion. In vivo administration of quercetin-3-methyl ether to HRV1B-infected mice significantly reduced viral RNA levels and inflammatory cytokine production in the lung tissues. Our findings demonstrated the potential of quercetin-3-methyl ether as a novel antiviral agent against HRV1B, thereby providing a promising therapeutic strategy for the management of HRV1B infections and related complications.
3.The Cancer Clinical Library Database (CCLD) from the Korea-Clinical Data Utilization Network for Research Excellence (K-CURE) Project
Sangwon LEE ; Yeon Ho CHOI ; Hak Min KIM ; Min Ah HONG ; Phillip PARK ; In Hae KWAK ; Ye Ji KANG ; Kui Son CHOI ; Hyun-Joo KONG ; Hyosung CHA ; Hyun-Jin KIM ; Kwang Sun RYU ; Young Sang JEON ; Hwanhee KIM ; Jip Min JUNG ; Jeong-Soo IM ; Heejung CHAE
Cancer Research and Treatment 2025;57(1):19-27
The common data model (CDM) has found widespread application in healthcare studies, but its utilization in cancer research has been limited. This article describes the development and implementation strategy for Cancer Clinical Library Databases (CCLDs), which are standardized cancer-specific databases established under the Korea-Clinical Data Utilization Network for Research Excellence (K-CURE) project by the Korean Ministry of Health and Welfare. Fifteen leading hospitals and fourteen academic associations in Korea are engaged in constructing CCLDs for 10 primary cancer types. For each cancer type-specific CCLD, cancer data experts determine key clinical data items essential for cancer research, standardize these items across cancer types, and create a standardized schema. Comprehensive clinical records covering diagnosis, treatment, and outcomes, with annual updates, are collected for each cancer patient in the target population, and quality control is based on six-sigma standards. To protect patient privacy, CCLDs follow stringent data security guidelines by pseudonymizing personal identification information and operating within a closed analysis environment. Researchers can apply for access to CCLD data through the K-CURE portal, which is subject to Institutional Review Board and Data Review Board approval. The CCLD is considered a pioneering standardized cancer-specific database, significantly representing Korea’s cancer data. It is expected to overcome limitations of previous CDMs and provide a valuable resource for multicenter cancer research in Korea.
4.Early Administration of Nelonemdaz May Improve the Stroke Outcomes in Patients With Acute Stroke
Jin Soo LEE ; Ji Sung LEE ; Seong Hwan AHN ; Hyun Goo KANG ; Tae-Jin SONG ; Dong-Ick SHIN ; Hee-Joon BAE ; Chang Hun KIM ; Sung Hyuk HEO ; Jae-Kwan CHA ; Yeong Bae LEE ; Eung Gyu KIM ; Man Seok PARK ; Hee-Kwon PARK ; Jinkwon KIM ; Sungwook YU ; Heejung MO ; Sung Il SOHN ; Jee Hyun KWON ; Jae Guk KIM ; Young Seo KIM ; Jay Chol CHOI ; Yang-Ha HWANG ; Keun Hwa JUNG ; Soo-Kyoung KIM ; Woo Keun SEO ; Jung Hwa SEO ; Joonsang YOO ; Jun Young CHANG ; Mooseok PARK ; Kyu Sun YUM ; Chun San AN ; Byoung Joo GWAG ; Dennis W. CHOI ; Ji Man HONG ; Sun U. KWON ;
Journal of Stroke 2025;27(2):279-283
5.Early Administration of Nelonemdaz May Improve the Stroke Outcomes in Patients With Acute Stroke
Jin Soo LEE ; Ji Sung LEE ; Seong Hwan AHN ; Hyun Goo KANG ; Tae-Jin SONG ; Dong-Ick SHIN ; Hee-Joon BAE ; Chang Hun KIM ; Sung Hyuk HEO ; Jae-Kwan CHA ; Yeong Bae LEE ; Eung Gyu KIM ; Man Seok PARK ; Hee-Kwon PARK ; Jinkwon KIM ; Sungwook YU ; Heejung MO ; Sung Il SOHN ; Jee Hyun KWON ; Jae Guk KIM ; Young Seo KIM ; Jay Chol CHOI ; Yang-Ha HWANG ; Keun Hwa JUNG ; Soo-Kyoung KIM ; Woo Keun SEO ; Jung Hwa SEO ; Joonsang YOO ; Jun Young CHANG ; Mooseok PARK ; Kyu Sun YUM ; Chun San AN ; Byoung Joo GWAG ; Dennis W. CHOI ; Ji Man HONG ; Sun U. KWON ;
Journal of Stroke 2025;27(2):279-283
6.Quercetin-3-Methyl Ether Induces Early Apoptosis to Overcome HRV1B Immune Evasion, Suppress Viral Replication, and Mitigate Inflammatory Pathogenesis
Jae-Hyoung SONG ; Seo-Hyeon MUN ; Sunil MISHRA ; Seong-Ryeol KIM ; Heejung YANG ; Sun Shim CHOI ; Min-Jung KIM ; Dong-Yeop KIM ; Sungchan CHO ; Youngwook HAM ; Hwa-Jung CHOI ; Won-Jin BAEK ; Yong Soo KWON ; Jae-Hoon CHANG ; Hyun-Jeong KO
Biomolecules & Therapeutics 2025;33(2):388-398
Human rhinovirus (HRV) causes the common cold and exacerbates chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease. Despite its significant impact on public health, there are currently no approved vaccines or antiviral treatments for HRV infection. Apoptosis is the process through which cells eliminate themselves through the systematic activation of intrinsic death pathways in response to various stimuli. It plays an important role in viral infections and serves as a key immune defense mechanism in the interactions between viruses and the host. In the present study, we investigated the antiviral effects of quercetin-3-methyl ether, a flavonoid isolated from Serratula coronata, on human rhinovirus 1B (HRV1B). Quercetin-3-methyl ether significantly inhibited HRV1B replication in HeLa cells in a concentration-dependent manner, thereby reducing cytopathic effects and viral RNA levels. Time-course and time-of-addition analyses confirmed that quercetin-3-methyl ether exhibited antiviral activity during the early stages of viral infection, potentially targeting the replication and translation phases. Gene expression analysis using microarrays revealed that pro-apoptotic genes were upregulated in quercetin-3-methyl ether-treated cells, suggesting that quercetin-3-methyl ether enhances early apoptosis to counteract HRV1B-induced immune evasion. In vivo administration of quercetin-3-methyl ether to HRV1B-infected mice significantly reduced viral RNA levels and inflammatory cytokine production in the lung tissues. Our findings demonstrated the potential of quercetin-3-methyl ether as a novel antiviral agent against HRV1B, thereby providing a promising therapeutic strategy for the management of HRV1B infections and related complications.
7.The Cancer Clinical Library Database (CCLD) from the Korea-Clinical Data Utilization Network for Research Excellence (K-CURE) Project
Sangwon LEE ; Yeon Ho CHOI ; Hak Min KIM ; Min Ah HONG ; Phillip PARK ; In Hae KWAK ; Ye Ji KANG ; Kui Son CHOI ; Hyun-Joo KONG ; Hyosung CHA ; Hyun-Jin KIM ; Kwang Sun RYU ; Young Sang JEON ; Hwanhee KIM ; Jip Min JUNG ; Jeong-Soo IM ; Heejung CHAE
Cancer Research and Treatment 2025;57(1):19-27
The common data model (CDM) has found widespread application in healthcare studies, but its utilization in cancer research has been limited. This article describes the development and implementation strategy for Cancer Clinical Library Databases (CCLDs), which are standardized cancer-specific databases established under the Korea-Clinical Data Utilization Network for Research Excellence (K-CURE) project by the Korean Ministry of Health and Welfare. Fifteen leading hospitals and fourteen academic associations in Korea are engaged in constructing CCLDs for 10 primary cancer types. For each cancer type-specific CCLD, cancer data experts determine key clinical data items essential for cancer research, standardize these items across cancer types, and create a standardized schema. Comprehensive clinical records covering diagnosis, treatment, and outcomes, with annual updates, are collected for each cancer patient in the target population, and quality control is based on six-sigma standards. To protect patient privacy, CCLDs follow stringent data security guidelines by pseudonymizing personal identification information and operating within a closed analysis environment. Researchers can apply for access to CCLD data through the K-CURE portal, which is subject to Institutional Review Board and Data Review Board approval. The CCLD is considered a pioneering standardized cancer-specific database, significantly representing Korea’s cancer data. It is expected to overcome limitations of previous CDMs and provide a valuable resource for multicenter cancer research in Korea.
8.Quercetin-3-Methyl Ether Induces Early Apoptosis to Overcome HRV1B Immune Evasion, Suppress Viral Replication, and Mitigate Inflammatory Pathogenesis
Jae-Hyoung SONG ; Seo-Hyeon MUN ; Sunil MISHRA ; Seong-Ryeol KIM ; Heejung YANG ; Sun Shim CHOI ; Min-Jung KIM ; Dong-Yeop KIM ; Sungchan CHO ; Youngwook HAM ; Hwa-Jung CHOI ; Won-Jin BAEK ; Yong Soo KWON ; Jae-Hoon CHANG ; Hyun-Jeong KO
Biomolecules & Therapeutics 2025;33(2):388-398
Human rhinovirus (HRV) causes the common cold and exacerbates chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease. Despite its significant impact on public health, there are currently no approved vaccines or antiviral treatments for HRV infection. Apoptosis is the process through which cells eliminate themselves through the systematic activation of intrinsic death pathways in response to various stimuli. It plays an important role in viral infections and serves as a key immune defense mechanism in the interactions between viruses and the host. In the present study, we investigated the antiviral effects of quercetin-3-methyl ether, a flavonoid isolated from Serratula coronata, on human rhinovirus 1B (HRV1B). Quercetin-3-methyl ether significantly inhibited HRV1B replication in HeLa cells in a concentration-dependent manner, thereby reducing cytopathic effects and viral RNA levels. Time-course and time-of-addition analyses confirmed that quercetin-3-methyl ether exhibited antiviral activity during the early stages of viral infection, potentially targeting the replication and translation phases. Gene expression analysis using microarrays revealed that pro-apoptotic genes were upregulated in quercetin-3-methyl ether-treated cells, suggesting that quercetin-3-methyl ether enhances early apoptosis to counteract HRV1B-induced immune evasion. In vivo administration of quercetin-3-methyl ether to HRV1B-infected mice significantly reduced viral RNA levels and inflammatory cytokine production in the lung tissues. Our findings demonstrated the potential of quercetin-3-methyl ether as a novel antiviral agent against HRV1B, thereby providing a promising therapeutic strategy for the management of HRV1B infections and related complications.
9.The Cancer Clinical Library Database (CCLD) from the Korea-Clinical Data Utilization Network for Research Excellence (K-CURE) Project
Sangwon LEE ; Yeon Ho CHOI ; Hak Min KIM ; Min Ah HONG ; Phillip PARK ; In Hae KWAK ; Ye Ji KANG ; Kui Son CHOI ; Hyun-Joo KONG ; Hyosung CHA ; Hyun-Jin KIM ; Kwang Sun RYU ; Young Sang JEON ; Hwanhee KIM ; Jip Min JUNG ; Jeong-Soo IM ; Heejung CHAE
Cancer Research and Treatment 2025;57(1):19-27
The common data model (CDM) has found widespread application in healthcare studies, but its utilization in cancer research has been limited. This article describes the development and implementation strategy for Cancer Clinical Library Databases (CCLDs), which are standardized cancer-specific databases established under the Korea-Clinical Data Utilization Network for Research Excellence (K-CURE) project by the Korean Ministry of Health and Welfare. Fifteen leading hospitals and fourteen academic associations in Korea are engaged in constructing CCLDs for 10 primary cancer types. For each cancer type-specific CCLD, cancer data experts determine key clinical data items essential for cancer research, standardize these items across cancer types, and create a standardized schema. Comprehensive clinical records covering diagnosis, treatment, and outcomes, with annual updates, are collected for each cancer patient in the target population, and quality control is based on six-sigma standards. To protect patient privacy, CCLDs follow stringent data security guidelines by pseudonymizing personal identification information and operating within a closed analysis environment. Researchers can apply for access to CCLD data through the K-CURE portal, which is subject to Institutional Review Board and Data Review Board approval. The CCLD is considered a pioneering standardized cancer-specific database, significantly representing Korea’s cancer data. It is expected to overcome limitations of previous CDMs and provide a valuable resource for multicenter cancer research in Korea.
10.Evaluation of machining accuracy of zirconia Merlon fracture test models fabricated by subtractive and additive manufacturing
Heejung LEE ; Ji-Myung BAE ; Seunghan OH
Korean Journal of Dental Materials 2024;51(1):53-62
The machining accuracy of zirconia prostheses fabricated by the subtractive (SM) and additive manufacturing (AM) was evaluated using the Merlon fracture test model in ISO 18675 (2022). The SM specimens were fabricated by a DWX-51D (Roland, Sydney, NSW, Australia) using two zirconia blocks (Katana Zirconia HT; KH, Katana Zirconia STML; KS). The AM specimens were prepared by a DLP type 3D printer INNI-Ⅱ (AON, Gunpo, Korea) using zirconia liquid slurry (INNI-CERA; PZ). The specimen STL image was acquired using a model scanner (E3, 3 Shape A/S, Copenhagen, Denmark). The machining accuracy of the specimens was analyzed by the RMS method superimposing the reference STL image and the specimen STL image in image analysis software (Geomagic Control X, 3D Systems, Rock Hill, SC, USA). From the results of the machining accuracy analysis, the KH and KS groups showed statistically significantly better machining accuracy (lower RMS) than the PZ group (P<0.05). The KH and KS groups showed higher machining accuracy as the thickness decreased, and the 0.2 mm and 0.3 mm experimental groups showed statistically significantly better machining accuracy than the 0.4 mm experimental group (P<0.05). On the other hand, the PZ group showed better machining accuracy as the thickness increased, with the 0.4 mm group showing statistically significantly better machining accuracy than the 0.2 mm and 0.3 mm groups (P<0.05). Within the limitation of this study, the thickness of the final zirconia prosthesis fabricated by additive manufacturing should be at least 0.4 mm for clinical use in dentistry.

Result Analysis
Print
Save
E-mail