1.Validation of the Korean Version of the Huntington’s Disease Quality of Life Battery for Carers
Hee Jin CHANG ; Eungseok OH ; Won Tae YOON ; Chan Young LEE ; Kyum-Yil KWON ; Yun Su HWANG ; Chaewon SHIN ; Jee-Young LEE
Journal of Movement Disorders 2025;18(2):160-164
Objective:
The Huntington’s Disease Quality of Life Battery for Carers (HDQoL-C) is used to evaluate caregiver quality of life. This study aimed to develop and validate the Korean version of the HDQoL-C (K-HDQoL-C) to assess the burden on Korean caregivers of Huntington’s disease (HD) patients.
Methods:
A total of 19 HD caregivers (7 females, mean age 55.4±14.6 years) participated in this study. The K-HDQoL-C, a translation of the English version, consisted of demographic information, caring aspects, life satisfaction, and feelings about life. It was administered twice, 2 weeks apart. Internal consistency was evaluated using Cronbach’s α, and test-retest reliability was assessed with intraclass correlation coefficients. The relationship with the Zarit Burden Interview-12 (ZBI-12) was analyzed.
Results:
The internal consistencies of the K-HDQoL-C were 0.771 (part 2), 0.938 (part 3), and 0.891 (part 4). The test-retest reliability ranged from 0.908 to 0.936. Part 3 was negatively correlated with the ZBI-12, and part 4 was positively correlated with the ZBI-12 (r=-0.780, 0.923; p<0.001).
Conclusion
The K-HDQoL-C effectively evaluates the challenges faced by HD caregivers, particularly in terms of care aspects and life satisfaction.
2.Erratum to "Morroniside Protects C2C12 Myoblasts from Oxidative Damage Caused by ROS-mediated Mitochondrial Damage and Induction of Endoplasmic Reticulum Stress" Biomol Ther 32(3), 349-360 (2024)
Hyun HWANGBO ; Cheol PARK ; EunJin BANG ; Hyuk Soon KIM ; Sung-Jin BAE ; Eunjeong KIM ; Youngmi JUNG ; Sun-Hee LEEM ; Young Rok SEO ; Su Hyun HONG ; Gi-Young KIM ; Jin Won HYUN ; Yung Hyun CHOI
Biomolecules & Therapeutics 2025;33(3):555-555
3.Erratum to "Suppression of Lipopolysaccharide-induced Inflammatory and Oxidative Response by 5-Aminolevulinic Acid in RAW 264.7 Macrophages and Zebrafish Larvae" Biomol Ther 29(6), 685-696 (2021)
Seon Yeong JI ; Hee-Jae CHA ; Ilandarage Menu Neelaka MOLAGODA ; Min Yeong KIM ; So Young KIM ; Hyun HWANGBO ; Hyesook LEE ; Gi-Young KIM ; Do-Hyung KIM ; Jin Won HYUN ; Heui-Soo KIM ; Suhkmann KIM ; Cheng-Yun JIN ; Yung Hyun CHOI
Biomolecules & Therapeutics 2025;33(3):554-554
4.Paeoniflorin Protects Retinal Pigment Epithelial Cells from High Glucose-Induced Oxidative Damage by Activating Nrf2-Mediated HO-1 Signaling
Cheol PARK ; Hee-Jae CHA ; Su Hyun HONG ; Jeong Sook NOH ; Sang Hoon HONG ; Gi Young KIM ; Jung-Hyun SHIM ; Jin Won HYUN ; Yung Hyun CHOI
Biomolecules & Therapeutics 2025;33(3):518-528
Oxidative stress due to hyperglycemia damages the functions of retinal pigment epithelial (RPE) cells and is a major risk factor for diabetic retinopathy (DR). Paeoniflorin is a monoterpenoid glycoside found in the roots of Paeonia lactiflora Pall and has been reported to have a variety of health benefits. However, the mechanisms underlying its therapeutic effects on high glucose (HG)-induced oxidative damage in RPE cells are not fully understood. In this study, we investigated the protective effect of paeoniflorin against HG-induced oxidative damage in cultured human RPE ARPE-19 cells, an in vitro model of hyperglycemia. Pretreatment with paeoniflorin markedly reduced HG-induced cytotoxicity and DNA damage. Paeoniflorin inhibited HG-induced apoptosis by suppressing activation of the caspase cascade, and this suppression was associated with the blockade of cytochrome c release to cytoplasm by maintaining mitochondrial membrane stability. In addition, paeoniflorin suppressed the HG-induced production of reactive oxygen species (ROS), increased the phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key redox regulator, and the expression of its downstream factor heme oxygenase-1 (HO-1). On the other hand, zinc protoporphyrin (ZnPP), an inhibitor of HO-1, abolished the protective effect of paeoniflorin against ROS production in HG-treated cells. Furthermore, ZnPP reversed the protective effects of paeoniflorin against HG-induced cellular damage and induced mitochondrial damage, DNA injury, and apoptosis in paeoniflorin-treated cells. These results suggest that paeoniflorin protects RPE cells from HG-mediated oxidative stress-induced cytotoxicity by activating Nrf2/HO-1 signaling and highlight the potential therapeutic use of paeoniflorin to improve the symptoms of DR.
5.Cynaropicrin Induces Reactive Oxygen Species-Dependent Paraptosis-Like Cell Death in Human Liver Cancer Cells
Min Yeong KIM ; Hee-Jae CHA ; Su Hyun HONG ; Sung-Kwon MOON ; Taeg Kyu KWON ; Young-Chae CHANG ; Gi Young KIM ; Jin Won HYUN ; A-Young NAM ; Jung-Hyun SHIM ; Yung Hyun CHOI
Biomolecules & Therapeutics 2025;33(3):470-482
Cynaropicrin, a sesquiterpene lactone found in artichoke leaves exerts diverse pharmacological effects. This study investigated whether cynaropicrin has a paraptosis-like cell death effect in human hepatocellular carcinoma Hep3B cells in addition to the apoptotic effects reported in several cancer cell lines. Cynaropicrin-induced cytotoxicity and cytoplasmic vacuolation, a key characteristic of paraptosis, were not ameliorated by inhibitors of necroptosis, autophagy, or pan caspase inhibitors in Hep3B cells. Our study showed that cynaropicrin-induced cytotoxicity was accompanied by mitochondrial dysfunction and endoplasmic reticulum stress along with increased cellular calcium ion levels. These effects were significantly mitigated by endoplasmic reticulum stress inhibitor or protein synthesis inhibitor. Moreover, cynaropicrin treatment in Hep3B cells increased reactive oxygen species generation and downregulated apoptosis-linked gene 2-interacting protein X (Alix), a protein that inhibits paraptosis. The addition of the reactive oxygen species scavenger N-acetyl-L-cysteine (NAC) neutralized cynaropicrin-induced changes in Alix expression and endoplasmic reticulum stress marker proteins counteracting endoplasmic reticulum stress and mitochondrial impairment. This demonstrates a close relationship between endoplasmic reticulum stress and reactive oxygen species generation. Additionally, cynaropicrin activated p38 mitogen activated protein kinase and a selective p38 mitogen activated protein kinase blocker alleviated the biological phenomena induced by cynaropicrin. NAC pretreatment showed the best reversal of cynaropicrin induced vacuolation and cellular inactivity. Our findings suggest that cynaropicrin induced oxidative stress in Hep3B cells contributes to paraptotic events including endoplasmic reticulum stress and mitochondrial damage.
6.Target-Enhanced Whole-Genome Sequencing Shows Clinical Validity Equivalent to Commercially Available Targeted Oncology Panel
Sangmoon LEE ; Jin ROH ; Jun Sung PARK ; Islam Oguz TUNCAY ; Wonchul LEE ; Jung-Ah KIM ; Brian Baek-Lok OH ; Jong-Yeon SHIN ; Jeong Seok LEE ; Young Seok JU ; Ryul KIM ; Seongyeol PARK ; Jaemo KOO ; Hansol PARK ; Joonoh LIM ; Erin CONNOLLY-STRONG ; Tae-Hwan KIM ; Yong Won CHOI ; Mi Sun AHN ; Hyun Woo LEE ; Seokhwi KIM ; Jang-Hee KIM ; Minsuk KWON
Cancer Research and Treatment 2025;57(2):350-361
Purpose:
Cancer poses a significant global health challenge, demanding precise genomic testing for individualized treatment strategies. Targeted-panel sequencing (TPS) has improved personalized oncology but often lacks comprehensive coverage of crucial cancer alterations. Whole-genome sequencing (WGS) addresses this gap, offering extensive genomic testing. This study demonstrates the medical potential of WGS.
Materials and Methods:
This study evaluates target-enhanced WGS (TE-WGS), a clinical-grade WGS method sequencing both cancer and matched normal tissues. Forty-nine patients with various solid cancer types underwent both TE-WGS and TruSight Oncology 500 (TSO500), one of the mainstream TPS approaches.
Results:
TE-WGS detected all variants reported by TSO500 (100%, 498/498). A high correlation in variant allele fractions was observed between TE-WGS and TSO500 (r=0.978). Notably, 223 variants (44.8%) within the common set were discerned exclusively by TE-WGS in peripheral blood, suggesting their germline origin. Conversely, the remaining subset of 275 variants (55.2%) were not detected in peripheral blood using the TE-WGS, signifying them as bona fide somatic variants. Further, TE-WGS provided accurate copy number profiles, fusion genes, microsatellite instability, and homologous recombination deficiency scores, which were essential for clinical decision-making.
Conclusion
TE-WGS is a comprehensive approach in personalized oncology, matching TSO500’s key biomarker detection capabilities. It uniquely identifies germline variants and genomic instability markers, offering additional clinical actions. Its adaptability and cost-effectiveness underscore its clinical utility, making TE-WGS a valuable tool in personalized cancer treatment.
7.The Effect of Hematopoietic Stem Cell Transplantation on Treatment Outcome in Children with Acute Lymphoblastic Leukemia
Hee Young JU ; Na Hee LEE ; Eun Sang YI ; Young Bae CHOI ; So Jin KIM ; Ju Kyung HYUN ; Hee Won CHO ; Jae Kyung LEE ; Ji Won LEE ; Ki Woong SUNG ; Hong Hoe KOO ; Keon Hee YOO
Cancer Research and Treatment 2025;57(1):240-249
Purpose:
Hematopoietic stem cell transplantation (HSCT) has been an important method of treatment in the advance of pediatric acute lymphoblastic leukemia (ALL). The indications for HSCT are evolving and require updated establishment. In this study, we aimed to investigate the efficacy of HSCT on the treatment outcome of pediatric ALL, considering the indications for HSCT and subgroups.
Materials and Methods:
A retrospective analysis was conducted on ALL patients diagnosed and treated at a single center. Risk groups were categorized based on age at diagnosis, initial white blood cell count, disease lineage (B/T), and cytogenetic study results. Data on the patients’ disease status at HSCT and indications of HSCT were collected. Indications for HSCT were categorized as upfront HSCT at 1st complete remission, relapse, and refractory disease.
Results:
Among the 549 screened patients, a total of 418 patients were included in the study; B-cell ALL (n=379) and T-cell ALL (T-ALL) (n=39). HSCT was conducted on a total of 106 patients (25.4%), with a higher frequency as upfront HSCT in higher-risk groups and specific cytogenetics. The overall survival (OS) was significantly better when done upfront than in relapsed or refractory state in T-ALL patients (p=0.002). The KMT2A-rearranged ALL patients showed superior event-free survival (p=0.002) and OS (p=0.022) when HSCT was done as upfront treatment.
Conclusion
HSCT had a substantial positive effect in a specific subset of pediatric ALL. In particular, frontline HSCT for T-ALL and KMT2A-rearranged ALL offered a better prognosis than when HSCT was conducted in a relapsed or refractory setting.
8.Gene Expression Alteration by Non-thermal Plasma-Activated Media Treatment in Radioresistant Head and Neck Squamous Cell Carcinoma
Sicong ZHENG ; Yudan PIAO ; Seung-Nam JUNG ; Chan OH ; Mi Ae LIM ; QuocKhanh NGUYEN ; Shan SHEN ; Se-Hee PARK ; Shengzhe CUI ; Shuyu PIAO ; Young Il KIM ; Ji Won KIM ; Ho-Ryun WON ; Jae Won CHANG ; Yujuan SHAN ; Lihua LIU ; Bon Seok KOO
Clinical and Experimental Otorhinolaryngology 2025;18(1):73-87
Objectives:
. Head and neck squamous cell carcinoma (HNSCC) exhibits high recurrence rates, particularly in cases of radioresistant HNSCC (RR-HNSCC). Non-thermal plasma (NTP) therapy effectively suppresses the progression of HNSCC. However, the therapeutic mechanisms of NTP therapy in treating RR-HNSCC are not well understood. In this study, we explored the regulatory role of NTP in the RR-HNSCC signaling pathway and identified its signature genes.
Methods:
. After constructing two RR-HNSCC cell lines, we prepared cell lysates from cells treated or not treated with NTP-activated media (NTPAM) and performed RNA sequencing to determine their mRNA expression profiles. Based on the RNA sequencing results, we identified differentially expressed genes (DEGs), followed by a bioinformatics analysis to identify candidate molecules potentially associated with NTPAM therapy for RR-HNSCC.
Results:
. NTPAM reduced RR-HNSCC cell viability in vitro. RNA sequencing results indicated that NTPAM treatment activated the reactive oxygen species (ROS) pathway and induced ferroptosis in RR-HNSCC cell lines. Among the 1,924 genes correlated with radiation treatment, eight showed statistical significance in both the cell lines and The Cancer Genome Atlas (TCGA) cohort. Only five genes—ABCC3, DUSP16, PDGFB, RAF1, and THBS1—showed consistent results between the NTPAM data sequencing and TCGA data. LASSO regression analysis revealed that five genes were associated with cancer prognosis, with a hazard ratio of 2.26. In RR-HNSCC cells, NTPAM affected DUSP16, PDGFB, and THBS1 as activated markers within 6 hours, and this effect persisted for 12 hours. Furthermore, enrichment analysis indicated that these three DEGs were associated with the extracellular matrix, transforming growth factor-beta, phosphoinositide 3-kinase/protein kinase B, and mesenchymal-epithelial transition factor pathways.
Conclusion
. NTPAM therapy exerts cytotoxic effects in RR-HNSCC cell lines by inducing specific ROS-mediated ferroptosis. DUSP16, PDGFB, and THBS1 were identified as crucial targets for reversing the radiation resistance induced by NTPAM therapy, providing insights into the mechanisms and clinical applications of NTPAM treatment in RR-HNSCC.
9.KASL clinical practice guidelines for the management of metabolic dysfunction-associated steatotic liver disease 2025
Won SOHN ; Young-Sun LEE ; Soon Sun KIM ; Jung Hee KIM ; Young-Joo JIN ; Gi-Ae KIM ; Pil Soo SUNG ; Jeong-Ju YOO ; Young CHANG ; Eun Joo LEE ; Hye Won LEE ; Miyoung CHOI ; Su Jong YU ; Young Kul JUNG ; Byoung Kuk JANG ;
Clinical and Molecular Hepatology 2025;31(Suppl):S1-S31

Result Analysis
Print
Save
E-mail