1.Association between preoperative oxygen reserve index and postoperative pulmonary complications: a prospective observational study
Sangho LEE ; Halin HONG ; Hyojin CHO ; Sang-Wook LEE ; Ann Hee YOU ; Hee Yong KANG ; Sung Wook PARK ; Mi Kyeong KIM ; Jeong-Hyun CHOI
Korean Journal of Anesthesiology 2025;78(3):224-235
Background:
The oxygen reserve index (ORi) noninvasively measures oxygen levels within the mild hyperoxia range. To evaluate whether a degree of increase in the ORi during preoxygenation for general anesthesia is associated with the occurrence of postoperative pulmonary complications (PPCs).
Methods:
We enrolled 154 patients who underwent preoperative pulmonary function tests and were scheduled for elective surgery under general anesthesia. We aimed to measure the increase in ORi during preoxygenation before general anesthesia and analyze its association with PPCs.
Results:
PPCs occurred in 76 (49%) participants. Multivariate logistic regression analysis revealed that the three-minute preoxygenation ORi was significantly associated with PPCs (Odds ratio [OR]: 0.02, 95% CI [0.00–0.16], P < 0.001). The areas under the curve (AUC [95% CI]) in the receiver operating characteristic curve analysis for the three-minute preoxygenation ORi for PPCs were 0.64 (0.55–0.73). After a subgroup analysis, multivariate logistic regression showed that the three-minute preoxygenation ORi was significantly associated with PPCs among patients who underwent thoracic surgery (OR: 0.01, 95% CI [0.00–0.19], P = 0.006). The AUC of the three-minute preoxygenation ORi for PPCs was 0.72 (0.57–0.86) in patients who underwent thoracic surgery.
Conclusions
A low ORi measured after 3 min of preoxygenation for general anesthesia was associated with an increased risk of PPCs, including those undergoing thoracic surgery. This study demonstrated the potential of ORi, measured after oxygen administration, as a tool for evaluating lung function that complements traditional lung function tests and scoring systems.
2.Association between preoperative oxygen reserve index and postoperative pulmonary complications: a prospective observational study
Sangho LEE ; Halin HONG ; Hyojin CHO ; Sang-Wook LEE ; Ann Hee YOU ; Hee Yong KANG ; Sung Wook PARK ; Mi Kyeong KIM ; Jeong-Hyun CHOI
Korean Journal of Anesthesiology 2025;78(3):224-235
Background:
The oxygen reserve index (ORi) noninvasively measures oxygen levels within the mild hyperoxia range. To evaluate whether a degree of increase in the ORi during preoxygenation for general anesthesia is associated with the occurrence of postoperative pulmonary complications (PPCs).
Methods:
We enrolled 154 patients who underwent preoperative pulmonary function tests and were scheduled for elective surgery under general anesthesia. We aimed to measure the increase in ORi during preoxygenation before general anesthesia and analyze its association with PPCs.
Results:
PPCs occurred in 76 (49%) participants. Multivariate logistic regression analysis revealed that the three-minute preoxygenation ORi was significantly associated with PPCs (Odds ratio [OR]: 0.02, 95% CI [0.00–0.16], P < 0.001). The areas under the curve (AUC [95% CI]) in the receiver operating characteristic curve analysis for the three-minute preoxygenation ORi for PPCs were 0.64 (0.55–0.73). After a subgroup analysis, multivariate logistic regression showed that the three-minute preoxygenation ORi was significantly associated with PPCs among patients who underwent thoracic surgery (OR: 0.01, 95% CI [0.00–0.19], P = 0.006). The AUC of the three-minute preoxygenation ORi for PPCs was 0.72 (0.57–0.86) in patients who underwent thoracic surgery.
Conclusions
A low ORi measured after 3 min of preoxygenation for general anesthesia was associated with an increased risk of PPCs, including those undergoing thoracic surgery. This study demonstrated the potential of ORi, measured after oxygen administration, as a tool for evaluating lung function that complements traditional lung function tests and scoring systems.
3.Association between preoperative oxygen reserve index and postoperative pulmonary complications: a prospective observational study
Sangho LEE ; Halin HONG ; Hyojin CHO ; Sang-Wook LEE ; Ann Hee YOU ; Hee Yong KANG ; Sung Wook PARK ; Mi Kyeong KIM ; Jeong-Hyun CHOI
Korean Journal of Anesthesiology 2025;78(3):224-235
Background:
The oxygen reserve index (ORi) noninvasively measures oxygen levels within the mild hyperoxia range. To evaluate whether a degree of increase in the ORi during preoxygenation for general anesthesia is associated with the occurrence of postoperative pulmonary complications (PPCs).
Methods:
We enrolled 154 patients who underwent preoperative pulmonary function tests and were scheduled for elective surgery under general anesthesia. We aimed to measure the increase in ORi during preoxygenation before general anesthesia and analyze its association with PPCs.
Results:
PPCs occurred in 76 (49%) participants. Multivariate logistic regression analysis revealed that the three-minute preoxygenation ORi was significantly associated with PPCs (Odds ratio [OR]: 0.02, 95% CI [0.00–0.16], P < 0.001). The areas under the curve (AUC [95% CI]) in the receiver operating characteristic curve analysis for the three-minute preoxygenation ORi for PPCs were 0.64 (0.55–0.73). After a subgroup analysis, multivariate logistic regression showed that the three-minute preoxygenation ORi was significantly associated with PPCs among patients who underwent thoracic surgery (OR: 0.01, 95% CI [0.00–0.19], P = 0.006). The AUC of the three-minute preoxygenation ORi for PPCs was 0.72 (0.57–0.86) in patients who underwent thoracic surgery.
Conclusions
A low ORi measured after 3 min of preoxygenation for general anesthesia was associated with an increased risk of PPCs, including those undergoing thoracic surgery. This study demonstrated the potential of ORi, measured after oxygen administration, as a tool for evaluating lung function that complements traditional lung function tests and scoring systems.
4.Association between preoperative oxygen reserve index and postoperative pulmonary complications: a prospective observational study
Sangho LEE ; Halin HONG ; Hyojin CHO ; Sang-Wook LEE ; Ann Hee YOU ; Hee Yong KANG ; Sung Wook PARK ; Mi Kyeong KIM ; Jeong-Hyun CHOI
Korean Journal of Anesthesiology 2025;78(3):224-235
Background:
The oxygen reserve index (ORi) noninvasively measures oxygen levels within the mild hyperoxia range. To evaluate whether a degree of increase in the ORi during preoxygenation for general anesthesia is associated with the occurrence of postoperative pulmonary complications (PPCs).
Methods:
We enrolled 154 patients who underwent preoperative pulmonary function tests and were scheduled for elective surgery under general anesthesia. We aimed to measure the increase in ORi during preoxygenation before general anesthesia and analyze its association with PPCs.
Results:
PPCs occurred in 76 (49%) participants. Multivariate logistic regression analysis revealed that the three-minute preoxygenation ORi was significantly associated with PPCs (Odds ratio [OR]: 0.02, 95% CI [0.00–0.16], P < 0.001). The areas under the curve (AUC [95% CI]) in the receiver operating characteristic curve analysis for the three-minute preoxygenation ORi for PPCs were 0.64 (0.55–0.73). After a subgroup analysis, multivariate logistic regression showed that the three-minute preoxygenation ORi was significantly associated with PPCs among patients who underwent thoracic surgery (OR: 0.01, 95% CI [0.00–0.19], P = 0.006). The AUC of the three-minute preoxygenation ORi for PPCs was 0.72 (0.57–0.86) in patients who underwent thoracic surgery.
Conclusions
A low ORi measured after 3 min of preoxygenation for general anesthesia was associated with an increased risk of PPCs, including those undergoing thoracic surgery. This study demonstrated the potential of ORi, measured after oxygen administration, as a tool for evaluating lung function that complements traditional lung function tests and scoring systems.
5.Current Status of Flow Cytometric Immunophenotyping of Hematolymphoid Neoplasms in Korea
Mikyoung PARK ; Jihyang LIM ; Ari AHN ; Eun-Jee OH ; Jaewoo SONG ; Kyeong-Hee KIM ; Jin-Yeong HAN ; Hyun-Woo CHOI ; Joo-Heon PARK ; Kyung-Hwa SHIN ; Hyerim KIM ; Miyoung KIM ; Sang-Hyun HWANG ; Hyun-Young KIM ; Duck CHO ; Eun-Suk KANG
Annals of Laboratory Medicine 2024;44(3):222-234
Background:
Flow cytometric immunophenotyping of hematolymphoid neoplasms (FCIHLN) is essential for diagnosis, classification, and minimal residual disease (MRD) monitoring. FCI-HLN is typically performed using in-house protocols, raising the need for standardization. Therefore, we surveyed the current status of FCI-HLN in Korea to obtain fundamental data for quality improvement and standardization.
Methods:
Eight university hospitals actively conducting FCI-HLN participated in our survey.We analyzed responses to a questionnaire that included inquiries regarding test items, reagent antibodies (RAs), fluorophores, sample amounts (SAs), reagent antibody amounts (RAAs), acquisition cell number (ACN), isotype control (IC) usage, positiveegative criteria, and reporting.
Results:
Most hospitals used acute HLN, chronic HLN, plasma cell neoplasm (PCN), and MRD panels. The numbers of RAs were heterogeneous, with a maximum of 32, 26, 12, 14, and 10 antibodies used for acute HLN, chronic HLN, PCN, ALL-MRD, and multiple myeloma-MRD, respectively. The number of fluorophores ranged from 4 to 10. RAs, SAs, RAAs, and ACN were diverse. Most hospitals used a positive criterion of 20%, whereas one used 10% for acute and chronic HLN panels. Five hospitals used ICs for the negative criterion. Positiveegative assignments, percentages, and general opinions were commonly reported. In MRD reporting, the limit of detection and lower limit of quantification were included.
Conclusions
This is the first comprehensive study on the current status of FCI-HLN in Korea, confirming the high heterogeneity and complexity of FCI-HLN practices. Standardization of FCI-HLN is urgently needed. The findings provide a reference for establishing standard FCI-HLN guidelines.
6.Beyond the icebox: modern strategies in organ preservation for transplantation
Kidus Haile YEMANEBERHAN ; Minseok KANG ; Jun Hwan JANG ; Jin Hee KIM ; Kyeong Sik KIM ; Ho Bum PARK ; Dongho CHOI
Clinical Transplantation and Research 2024;38(4):377-403
Organ transplantation, a critical treatment for end-stage organ failure, has witnessed significant advancements due to the integration of improved surgical techniques, immunosuppressive therapies, and donor-recipient matching. This review explores the progress of organ preservation, focusing on the shift from static cold storage (SCS) to advanced machine perfusion techniques such as hypothermic (HMP) and normothermic machine perfusion (NMP). Although SCS has been the standard approach, its limitations in preserving marginal organs and preventing ischemia-reperfusion injury (IRI) have led to the adoption of HMP and NMP. HMP, which is now the gold standard for high-risk donor kidneys, reduces metabolic activity and improves posttransplant outcomes. NMP allows real-time organ viability assessment and reconditioning, especially for liver transplants. Controlled oxygenated rewarming further minimizes IRI by addressing mitochondrial dysfunction. The review also highlights the potential of cryopreservation for long-term organ storage, despite challenges with ice formation. These advances are crucial for expanding the donor pool, improving transplant success rates, and addressing organ shortages. Continued innovation is necessary to meet the growing demands of transplantation and save more lives.
7.Beyond the icebox: modern strategies in organ preservation for transplantation
Kidus Haile YEMANEBERHAN ; Minseok KANG ; Jun Hwan JANG ; Jin Hee KIM ; Kyeong Sik KIM ; Ho Bum PARK ; Dongho CHOI
Clinical Transplantation and Research 2024;38(4):377-403
Organ transplantation, a critical treatment for end-stage organ failure, has witnessed significant advancements due to the integration of improved surgical techniques, immunosuppressive therapies, and donor-recipient matching. This review explores the progress of organ preservation, focusing on the shift from static cold storage (SCS) to advanced machine perfusion techniques such as hypothermic (HMP) and normothermic machine perfusion (NMP). Although SCS has been the standard approach, its limitations in preserving marginal organs and preventing ischemia-reperfusion injury (IRI) have led to the adoption of HMP and NMP. HMP, which is now the gold standard for high-risk donor kidneys, reduces metabolic activity and improves posttransplant outcomes. NMP allows real-time organ viability assessment and reconditioning, especially for liver transplants. Controlled oxygenated rewarming further minimizes IRI by addressing mitochondrial dysfunction. The review also highlights the potential of cryopreservation for long-term organ storage, despite challenges with ice formation. These advances are crucial for expanding the donor pool, improving transplant success rates, and addressing organ shortages. Continued innovation is necessary to meet the growing demands of transplantation and save more lives.
8.Beyond the icebox: modern strategies in organ preservation for transplantation
Kidus Haile YEMANEBERHAN ; Minseok KANG ; Jun Hwan JANG ; Jin Hee KIM ; Kyeong Sik KIM ; Ho Bum PARK ; Dongho CHOI
Clinical Transplantation and Research 2024;38(4):377-403
Organ transplantation, a critical treatment for end-stage organ failure, has witnessed significant advancements due to the integration of improved surgical techniques, immunosuppressive therapies, and donor-recipient matching. This review explores the progress of organ preservation, focusing on the shift from static cold storage (SCS) to advanced machine perfusion techniques such as hypothermic (HMP) and normothermic machine perfusion (NMP). Although SCS has been the standard approach, its limitations in preserving marginal organs and preventing ischemia-reperfusion injury (IRI) have led to the adoption of HMP and NMP. HMP, which is now the gold standard for high-risk donor kidneys, reduces metabolic activity and improves posttransplant outcomes. NMP allows real-time organ viability assessment and reconditioning, especially for liver transplants. Controlled oxygenated rewarming further minimizes IRI by addressing mitochondrial dysfunction. The review also highlights the potential of cryopreservation for long-term organ storage, despite challenges with ice formation. These advances are crucial for expanding the donor pool, improving transplant success rates, and addressing organ shortages. Continued innovation is necessary to meet the growing demands of transplantation and save more lives.
9.Beyond the icebox: modern strategies in organ preservation for transplantation
Kidus Haile YEMANEBERHAN ; Minseok KANG ; Jun Hwan JANG ; Jin Hee KIM ; Kyeong Sik KIM ; Ho Bum PARK ; Dongho CHOI
Clinical Transplantation and Research 2024;38(4):377-403
Organ transplantation, a critical treatment for end-stage organ failure, has witnessed significant advancements due to the integration of improved surgical techniques, immunosuppressive therapies, and donor-recipient matching. This review explores the progress of organ preservation, focusing on the shift from static cold storage (SCS) to advanced machine perfusion techniques such as hypothermic (HMP) and normothermic machine perfusion (NMP). Although SCS has been the standard approach, its limitations in preserving marginal organs and preventing ischemia-reperfusion injury (IRI) have led to the adoption of HMP and NMP. HMP, which is now the gold standard for high-risk donor kidneys, reduces metabolic activity and improves posttransplant outcomes. NMP allows real-time organ viability assessment and reconditioning, especially for liver transplants. Controlled oxygenated rewarming further minimizes IRI by addressing mitochondrial dysfunction. The review also highlights the potential of cryopreservation for long-term organ storage, despite challenges with ice formation. These advances are crucial for expanding the donor pool, improving transplant success rates, and addressing organ shortages. Continued innovation is necessary to meet the growing demands of transplantation and save more lives.
10.Preoperative Serum Copeptin Can Predict Delayed Hyponatremia after Pituitary Surgery in the Absence of Arginine Vasopressin Deficiency
Ho KANG ; Seung Shin PARK ; Yoo Hyung KIM ; Hwan Sub LIM ; Mi-Kyeong LEE ; Kyoung-Ryul LEE ; Jung Hee KIM ; Yong Hwy KIM
Endocrinology and Metabolism 2024;39(1):164-175
Background:
Delayed postoperative hyponatremia (DPH) is the most common cause of readmission after pituitary surgery. In this study, we aimed to evaluate the cutoff values of serum copeptin and determine the optimal timing for copeptin measurement for the prediction of the occurrence of DPH in patients who undergo endoscopic transsphenoidal approach (eTSA) surgery and tumor resection.
Methods:
This was a prospective observational study of 73 patients who underwent eTSA surgery for pituitary or stalk lesions. Copeptin levels were measured before surgery, 1 hour after extubation, and on postoperative days 1, 2, 7, and 90.
Results:
Among 73 patients, 23 patients (31.5%) developed DPH. The baseline ratio of copeptin to serum sodium level showed the highest predictive performance (area under the curve [AUROC], 0.699), and its optimal cutoff to maximize Youden’s index was 2.5×10–11, with a sensitivity of 91.3% and negative predictive value of 92.0%. No significant predictors were identified for patients with transient arginine vasopressin (AVP) deficiency. However, for patients without transient AVP deficiency, the copeptin-to-urine osmolarity ratio at baseline demonstrated the highest predictive performance (AUROC, 0.725). An optimal cutoff of 6.5×10–12 maximized Youden’s index, with a sensitivity of 92.9% and a negative predictive value of 94.1%.
Conclusion
The occurrence of DPH can be predicted using baseline copeptin and its ratio with serum sodium or urine osmolarity only in patients without transient AVP deficiency after pituitary surgery.

Result Analysis
Print
Save
E-mail