1.LGR5 interacts with HSP90AB1 to mediate enzalutamide resistance by activating the WNT/β-catenin/AR axis in prostate cancer.
Ze GAO ; Zhi XIONG ; Yiran TAO ; Qiong WANG ; Kaixuan GUO ; Kewei XU ; Hai HUANG
Chinese Medical Journal 2025;138(23):3184-3194
BACKGROUND:
Enzalutamide, a second-generation androgen receptor (AR) pathway inhibitor, is widely used in the treatment of castration-resistant prostate cancer. However, after a period of enzalutamide treatment, patients inevitably develop drug resistance. In this study, we characterized leucine-rich repeated G-protein-coupled receptor 5 (LGR5) and explored its potential therapeutic value in prostate cancer.
METHODS:
A total of 142 pairs of tumor and adjacent formalin-fixed paraf-fin-embedded tissue samples from patients with prostate cancer were collected from the Pathology Department at Sun Yat-sen Memorial Hos-pital. LGR5 was screened by sequencing data of enzalutamide-resistant cell lines combined with sequencing data of lesions with different Gleason scores from the same patients. The biological function of LGR5 and its effect on enzalutamide resistance were investigated in vitro and in vivo . Glutathione-S-transferase (GST) pull-down, coimmunoprecipitation, Western blotting, and immunofluorescence assays were used to explore the specific binding mechanism of LGR5 and related pathway changes.
RESULTS:
LGR5 was significantly upregulated in prostate cancer and negatively correlated with poor patient prognosis. Overexpression of LGR5 promoted the malignant progression of prostate cancer and reduced sensitivity to enzalutamide in vitro and in vivo . LGR5 promoted the phosphorylation of glycogen synthase kinase-3β (GSK-3β) by binding heat shock protein 90,000 alpha B1 (HSP90AB1) and mediated the activation of the Wingless/integrated (WNT)/β-catenin signaling pathway. The increased β-catenin in the cytoplasm entered the nucleus and bound to the nuclear AR, promoting the transcription level of AR, which led to the enhanced tolerance of prostate cancer to enzalutamide. Reducing HSP90AB1 binding to LGR5 significantly enhanced sensitivity to enzalutamide.
CONCLUSIONS
LGR5 directly binds to HSP90AB1 and mediates GSK-3β phosphorylation, promoting AR expression by regulating the WNT/β-catenin signaling pathway, thereby conferring resistance to enzalutamide treatment in prostate cancer.
Male
;
Humans
;
Phenylthiohydantoin/pharmacology*
;
Benzamides
;
Receptors, G-Protein-Coupled/genetics*
;
Nitriles
;
Cell Line, Tumor
;
HSP90 Heat-Shock Proteins/metabolism*
;
Drug Resistance, Neoplasm/genetics*
;
Prostatic Neoplasms/drug therapy*
;
beta Catenin/metabolism*
;
Receptors, Androgen/genetics*
;
Animals
;
Mice
;
Wnt Signaling Pathway/physiology*
2.A rapid method for detecting prfA and hly toxin genes of Listeria monocytogenes using double nucleic acid colloidal gold strips.
Yan LIU ; Jianyu YANG ; Yujiao ZHOU ; Wenbo DING ; Xianyu ZHANG ; Linran GAO ; Beizhen PAN ; Jifei YANG ; Yundong ZHAO
Journal of Southern Medical University 2025;45(2):387-394
OBJECTIVES:
To detect prfA and hly toxin genes of Listeria monocytogenes using polymerase chain reaction (PCR) and colloidal gold technology.
METHODS:
L. monocytogenes DNA was extracted by boiling method. With prfA and hly of L. monocytogenes as the target genes, the 5' ends of upstream and downstream primers of prfA gene were labeled with 6-FAM and biotin, and the 5' ends of upstream and downstream primers of hly gene were labeled with digoxin and biotin, respectively, to establish the toxin gene detection method. Using cloning transformation, sequencing analysis, cloning of positive control products, the detection kid was developed and its specificity, sensitivity, reproducibility and stability were tested, followed by verification with sample testing.
RESULTS:
The concentration of L. monocytogenes DNA extracted by boiling method was 148.81±0.97 ng/μL, and the A260/A280 ratio ranged from 1.8 to 2.0. The PCR products showed a 100% homology with the gene sequences in GenBank database after cloning, transformation and sequencing. The colloidal gold strip yielded positive results only for L. monocytogenes samples without cross-reactions with Staphylococcus aureus, Escherichia coli or Bacillus cereus, and its minimum detection limit was 10-2 ng/μL, demonstrating a 10-fold greater sensitivity of the test than agarose gel electrophoresis. The test also showed good reproducibility of the results when performed by different operators with good stability of the test strips after storage for 6 to 12 months. The test results showed that this kit could accurately and quickly detect L.monocytogenes in the test samples.
CONCLUSIONS
The detection kit developed in this study can simultaneously detect prfA and hly toxin genes of L. monocytogenes with good specificity, sensitivity, reproducibility and stability for use in food safety inspection.
Listeria monocytogenes/isolation & purification*
;
Gold Colloid
;
Bacterial Toxins/genetics*
;
Polymerase Chain Reaction/methods*
;
Hemolysin Proteins/genetics*
;
Bacterial Proteins/genetics*
;
DNA, Bacterial/genetics*
;
Food Microbiology
;
Heat-Shock Proteins
3.Mechanism of Colquhounia Root Tablets in inhibiting osteoclast differentiation based on HSP90 target modulation.
Pei-Ping CHEN ; Qian WANG ; Feng-Yu HUANG ; Xiang-Ying KONG ; Na LIN ; Xiao-Hui SU
China Journal of Chinese Materia Medica 2024;49(23):6389-6398
This study aimed to investigate the potential role of Colquhounia Root Tablets against bone destruction in rheumatoid arthritis(RA) and its molecular mechanism. The study used ultra-performance liquid chromatography-mass spectrometry to analyze the major components of Colquhounia Root Tablets and predicted its candidate target gene set based on the major components. The key targets of RA bone destruction were obtained through GeneCards and the Database of Genetics and Medical Literature(OMIM), protein-protein interaction(PPI) network was constructed, and the key targets were identified by topological analysis. The molecular mechanism of Colquhounia Root Tablets against RA bone destruction was further revealed using Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis. The effects of Colquhounia Root Tablets on macrophage viability was assessed by MTS assay and screened for non-toxic concentrations. A model of receptor activator of nuclear factor-κB(RANKL) induced osteoclast differentiation in vitro was constructed. Colquhounia Root Tablets were used to observe the formation and differentiation of osteoclasts by tartrate-resistant acid phosphatase(TRAP) staining and fibrous actin(F-actin) staining, and the effects of Colquhounia Root Tablets on the changes of core target proteins in the osteoclast differentiation system were detected by immunofluorescence and Western blot. The results showed that the main components of Colquhounia Root Tablets included 14 compounds such as triptolide, celastrol, and triptophenolide. Further network analysis revealed that heat-shock protein 90(HSP90) was the key target gene of Colquhounia Root Tablets for anti-RA bone destruction. TRAP staining and F-actin staining showed that the number and area of TRAP-positive polymorphonuclear cells, as well as actin rings, were reduced in a dose-dependent manner after the intervention of Colquhounia Root Tablets(P<0.01). Western blot results showed that the expression of HSP90 protein was significantly reduced after intervention with Colquhounia Root Tablets at 20 and 40 μg·mL~(-1)(P<0.01); Colquhounia Root Tablets at 10 μg·mL~(-1) could significantly decrease the expression of necrosis factor receptor associated molecule 6(TRAF6) and nuclear factor of activated T cells 1(NFATc1) proteins(P<0.01); moreover, all doses of Colquhounia Root Tablets significantly reduced the expression of osteoclast differentiation marker proteins matrix metalloproteinase 9(MMP9) and cathepsin K(CTSK)(P<0.01).Immunofluorescence results further confirmed that Colquhounia Root Tablets significantly inhibited HSP90 and CTSK levels, as well as NFATc1 activation in osteoblasts. In conclusion, the present study confirmed that Colquhounia Root Tablets may inhibit RANKL-induced osteoclast differentiation by regulating the key target of HSP90, thus exerting an anti-RA bone destruction effect, which will provide a new idea for Colquhounia Root Tablets to prevent and treat bone destruction in rheumatoid arthritis.
Osteoclasts/metabolism*
;
Mice
;
Animals
;
Cell Differentiation/drug effects*
;
HSP90 Heat-Shock Proteins/genetics*
;
Drugs, Chinese Herbal/chemistry*
;
Plant Roots/chemistry*
;
Humans
;
Arthritis, Rheumatoid/physiopathology*
;
Protein Interaction Maps/drug effects*
4.Causal relationship between ferroptosis-related gene HSPA5 and hepatocellular carcinoma: a study based on mendelian randomization and mediation analysis.
Bing CUI ; Chengcheng XU ; Yuan XU ; Aqin CHEN ; Chaoming MAO ; Yuehua CHEN
Journal of Zhejiang University. Medical sciences 2024;53(6):691-698
OBJECTIVES:
To explore a causal relationship between ferroptosis-related gene heat shock protein A5 (HSPA5) and hepatocellular carcinoma (HCC).
METHODS:
A two-sample Mendelian randomization (MR) design was employed to evaluate the causal relationships among HSPA5, regulatory T cells (Tregs), and HCC. Single nucleotide polymorphisms (SNPs) associated with HSPA5, Tregs and HCC were selected as instrumental variables through publicly available genome-wide association studies (GWAS) databases. MR analysis was used to assess the direct effect of HSPA5 on HCC, followed by two-step MR to analyze the potential mediating role of Tregs. Reverse MR analysis was conducted with HCC as the exposure and HSPA5 as the outcome. Inverse variance weighting was the primary method for testing causal associations in all MR analyses. Robustness of the results was confirmed through MR-Egger, weighted median, weighted mode, and simple mode methods. Heterogeneity of instrumental variables was evaluated using Cochrane's Q statistic, while pleiotropy was tested by MR-Egger intercept and MR-PRESSO, with leave-one-out sensitivity analysis performed for robustness. Data from The Cancer Genome Atlas (TCGA) and Human Protein Atlas (HPA) were utilized to verify the expression levels of HSPA5 in HCC tissues and its correlation with Tregs to reveal the interaction mechanisms between HSPA5 and Tregs in HCC progression and their relationship with patient prognosis.
RESULTS:
MR analysis showed a positive correlation between elevated HSPA5 expression and HCC risk (all P<0.01), while reverse MR analysis found no statistically significant association between HCC and HSPA5 (P>0.05). HSPA5 expression was significantly correlated with Tregs function (all P<0.05), and the enrichment of Tregs in HCC microenvironment was positively associated with HCC progression (all P<0.05). Mediation analysis indicated that Tregs accounted for 5.00% and 7.45% of the mediation effect between HSPA5 and HCC. TCGA and HPA database analysis revealed that both HSPA5 mRNA and protein expression levels were higher in HCC tissues compared to normal tissues, and high HSPA5 expression was significantly associated with poor prognosis. Immune infiltration analysis confirmed a significant positive correlation between HSPA5 and Tregs, with high Tregs infiltration closely related to HCC progression.
CONCLUSIONS
Elevated HSPA5 expression is significantly associated with HCC development and poor prognosis. HSPA5 may promote HCC progression by regulating the function of Tregs in the tumor microenvironment.
Humans
;
Liver Neoplasms/genetics*
;
Carcinoma, Hepatocellular/genetics*
;
Endoplasmic Reticulum Chaperone BiP
;
Mendelian Randomization Analysis
;
Genome-Wide Association Study
;
Polymorphism, Single Nucleotide
;
Heat-Shock Proteins/genetics*
;
Ferroptosis/genetics*
;
T-Lymphocytes, Regulatory/immunology*
5.Identification of heat shock protein hsp70 family genes from Rana amurensis and its expression profiles upon infection.
Tingting LIU ; Jingjing GUO ; Zhaodong CHEN ; Yufen LIU ; Legang JING ; Peng LIU ; Wenge ZHAO
Chinese Journal of Biotechnology 2023;39(4):1710-1730
Heat shock proteins (HSPs) widely exist in all organisms, the structures of which are usually extraordinarily conservative. They are also well-known stress proteins that are involved in response to physical, chemical and biological stresses. HSP70 is an important member of the HSPs family. In order to study the roles of amphibians HSP70 during infection, the cDNA sequence of Rana amurensis hsp70 family genes were cloned by homologous cloning method. The sequence characteristics, three-dimensional structure and genetic relationship of Ra-hsp70s were analyzed by bioinformatics methods. The expression profiles under bacterial infection were also analyzed by real-time quantitative PCR (qRT-PCR). Expression and localization of HSP70 protein were tested by immunohistochemical techniques. The results showed that three conservative tag sequences of HSP70 family, HSPA5, HSPA8 and HSPA13, were found in HSP70. Phylogenetic tree analysis indicated four members are distributed in four different branches, and members with the same subcellular localization motif are distributed in the same branch. The relative expression levels of the mRNA of four members were all significantly upregulated (P < 0.01) upon infection, but the time for up-regulating the expression levels were diverse in different tissues. The immunohistochemical analysis showed that HSP70 was expressed to different degrees in the cytoplasm of liver, kidney, skin and stomach tissue. The four members of Ra-hsp70 family have ability to respond bacterial infection to varying degrees. Therefore, it was proposed that they are involved in biological processes against pathogen and play different biological functions. The study provides a theoretical basis for functional studies of HSP70 gene in amphibians.
Heat-Shock Proteins/genetics*
;
Phylogeny
;
Amino Acid Sequence
;
HSP70 Heat-Shock Proteins/metabolism*
;
Stress, Physiological
6.Genetic analysis of a child with Charlevoix-Saguenay spastic ataxia due to variant of SACS gene.
Huan LUO ; Xiaolu CHEN ; Xueyi RAO ; Yajun SHEN ; Jinfeng LIU ; Zuozhen YANG ; Jing GAN
Chinese Journal of Medical Genetics 2023;40(5):558-562
OBJECTIVE:
To explore the clinical feature and genetic variant of a child with autosomal recessive Charlevoix-Saguenay type spastic ataxia (ARSACS).
METHODS:
Clinical data of a child who was admitted to the West China Second Hospital of Sichuan University on April 30, 2021 was collected. Whole exome sequencing (WES) was carried out for the child and his parents. Candidate variants were verified by Sanger sequencing and bioinformatic analysis based on the guidelines from the American College of Medical Genetics and Genomics (ACMG).
RESULTS:
The child, a 3-year-and-3-month-old female, had a complain of "walking instability for over a year". Physical and laboratory examination revealed progressive and aggravated gait instability, increased muscle tone of the right limbs, peripheral neuropathy of the lower limbs, and thickening of retinal nerve fiber layer. The results of WES revealed that she has harbored a maternally derived heterozygous deletion of exons 1 to 10 of the SACS gene, in addition with a de novo heterozygous c.3328dupA variant in exon 10 of the SACS gene. Based on the ACMG guidelines, the exons 1-10 deletion was rated as likely pathogenic (PVS1+PM2_Supporting), and the c.3328dupA was rated as a pathogenic variant (PVS1_Strong+PS2+PM2_Supporting). Neither variant was recorded in the human population databases.
CONCLUSION
The c.3328dupA variant and the deletion of exons 1-10 of the SACS gene probably underlay the ARSACS in this patient.
Female
;
Humans
;
Heat-Shock Proteins/genetics*
;
Muscle Spasticity/genetics*
;
Mutation
;
Spinocerebellar Ataxias/pathology*
;
Child, Preschool
7.Knockdown of ACC1 promotes migration of esophageal cancer cell.
He QIAN ; Cheng Wei GU ; Yu Zhen LIU ; Bao Sheng ZHAO
Chinese Journal of Oncology 2023;45(6):482-489
Objective: To investigate the effect of acetyl-CoA carboxylase 1 (ACC1) knockdown on the migration of esophageal squamous cell carcinoma (ESCC) KYSE-450 cell and underlying mechanism. Methods: Lentiviral transfection was conducted to establish sh-NC control cell and ACC1 knocking down cell (sh-ACC1). Human siRNA HSP27 and control were transfected by Lipo2000 to get si-HSP27 and si-NC. The selective acetyltransferase P300/CBP inhibitor C646 was used to inhibit histone acetylation and DMSO was used as vehicle control. Transwell assay was performed to detect cell migration. The expression of HSP27 mRNA was examined by reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) and the expressions of ACC1, H3K9ac, HSP27 and epithelial-mesenchymal transition-related proteins E-cadherin and Vimentin were detected by western blot. Results: The expression level of ACC1 in sh-NC group was higher than that in sh-ACC1 group (P<0.01). The number of cell migration in sh-NC group was (159.00±24.38), lower than (361.80±26.81) in sh-ACC1 group (P<0.01). The protein expression levels of E-cadherin and Vimentin in sh-NC group were statistically significant compared with sh-AAC1 group (P<0.05). The migrated cell number in sh-NC+ si-NC group was (189.20±16.02), lower than (371.60±38.40) in sh-ACC1+ si-NC group (P<0.01). The migrated cell number in sh-NC+ si-NC group was higher than that in sh-NC+ si-HSP27 group (152.40±24.30, P<0.01), and the migrated cell number in sh-ACC1+ si-NC group was higher than that in sh-ACC1+ si-HSP27 group (P<0.01). The protein expression levels of E-cadherin and Vimentin in sh-NC+ si-NC group were significantly different from those in sh-ACC1+ si-NC and sh-NC+ si-HSP27 groups (P<0.01). The protein expression levels of E-cadherin and Vimentin in sh-ACC1+ si-NC group were significantly different from those in sh-ACC1+ si-HSP27 group (P<0.01). After 24 h treatment with C646 at 20 μmmo/L, the migrated cell number in sh-NC+ DMSO group was (190.80±11.95), lower than (395.80±17.10) in sh-ACC1+ DMSO group (P<0.01). The migrated cell number in sh-NC+ DMSO group was lower than that in sh-NC+ C646 group (256.20±23.32, P<0.01). The migrated cell number in sh-ACC1+ DMSO group was higher than that in sh-ACC1+ C646 group (87.80±11.23, P<0.01). The protein expressions of H3K9ac, HSP27, E-cadherin and Vimentin in sh-NC+ DMSO group were significantly different from those in sh-ACC1+ DMSO group and sh-NC+ C646 group (P<0.01). The protein expression levels of H3K9ac, HSP27, E-cadherin and Vimentin in sh-ACC1+ DMSO group were significantly different from those in sh-ACC1+ C646 group (P<0.01). Conclusion: Knockdown of ACC1 promotes the migration of KYSE-450 cell by up-regulating HSP27 and increasing histone acetylation.
Humans
;
Esophageal Neoplasms/pathology*
;
Esophageal Squamous Cell Carcinoma/genetics*
;
Vimentin/metabolism*
;
Dimethyl Sulfoxide
;
HSP27 Heat-Shock Proteins/metabolism*
;
Histones/metabolism*
;
Cadherins/metabolism*
;
Cell Movement
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Epithelial-Mesenchymal Transition/genetics*
;
Gene Expression Regulation, Neoplastic
8.Differential expression and implication of m6A methylation in mice with experimental myocardial infarction.
Shu Chen ZHANG ; Xiao Ya ZHAO ; Li Li CHEN ; Xiang ZHOU
Chinese Journal of Cardiology 2023;51(11):1166-1174
Objective: To define differentially expressed N6-adenylate methylation (m6A) genes in the myocardial tissue of mice with myocardial infarction (MI) and explore its potential impact on the pathological process of MI. Methods: The random number table method was used to divide the eighteen SPF C57BL/6J male mice aged from 8 to 10 weeks into MI group (MI group, n=9) and control group (control group, n=9). Modified m6A genes from the myocardial tissue were detected via methylated RNA immunoprecipitation with the next generation sequencing (MeRIP-seq). We explored methylation modified characteristics, verified mRNA expression and m6A modified level by bioinformatics analysis, qPCR and MeRIP-qPCR. Results: The Heatmap revealed that 901 differentially modified m6A genes between MI and control group, of which 537 genes were upregulated, and 364 genes were downregulated. The principal component analysis affirmed that two groups could be distinguished significantly in terms of m6A gene modification. The characteristic sequence of m6A modification was GGACU and mainly concentrated in the coding sequence. According to the conjoint analysis with RNA-seq and MeRIP-seq, 119 genes expressed simultaneous m6A modification difference and mRNA expression difference. The Venn diagram exhibited the positive and negative correlation between m6A modification and mRNA expression. Besides, the GO enrichment analysis indicated that the genes with m6A differential modification in MI group were mainly involved in heart development and other processes. qPCR verified that Gbp6 was up-regulated, while Dnaja1 and Dnajb1 were down-regulated. MeRIP-qPCR revealed that the m6A modification level of Hspa1b was downregulated. Conclusion: Myocardial infarction induces differential modification of m6A in the mice model. In addition, the genes with m6A modification may be affected by methylation related enzymes, thus participating the pathogenesis of MI by regulating apoptosis and inflammation.
Male
;
Animals
;
Mice
;
Mice, Inbred C57BL
;
Methylation
;
Myocardial Infarction/genetics*
;
Myocardium
;
RNA, Messenger/genetics*
;
HSP40 Heat-Shock Proteins
9.Differential expression and implication of m6A methylation in mice with experimental myocardial infarction.
Shu Chen ZHANG ; Xiao Ya ZHAO ; Li Li CHEN ; Xiang ZHOU
Chinese Journal of Cardiology 2023;51(11):1166-1174
Objective: To define differentially expressed N6-adenylate methylation (m6A) genes in the myocardial tissue of mice with myocardial infarction (MI) and explore its potential impact on the pathological process of MI. Methods: The random number table method was used to divide the eighteen SPF C57BL/6J male mice aged from 8 to 10 weeks into MI group (MI group, n=9) and control group (control group, n=9). Modified m6A genes from the myocardial tissue were detected via methylated RNA immunoprecipitation with the next generation sequencing (MeRIP-seq). We explored methylation modified characteristics, verified mRNA expression and m6A modified level by bioinformatics analysis, qPCR and MeRIP-qPCR. Results: The Heatmap revealed that 901 differentially modified m6A genes between MI and control group, of which 537 genes were upregulated, and 364 genes were downregulated. The principal component analysis affirmed that two groups could be distinguished significantly in terms of m6A gene modification. The characteristic sequence of m6A modification was GGACU and mainly concentrated in the coding sequence. According to the conjoint analysis with RNA-seq and MeRIP-seq, 119 genes expressed simultaneous m6A modification difference and mRNA expression difference. The Venn diagram exhibited the positive and negative correlation between m6A modification and mRNA expression. Besides, the GO enrichment analysis indicated that the genes with m6A differential modification in MI group were mainly involved in heart development and other processes. qPCR verified that Gbp6 was up-regulated, while Dnaja1 and Dnajb1 were down-regulated. MeRIP-qPCR revealed that the m6A modification level of Hspa1b was downregulated. Conclusion: Myocardial infarction induces differential modification of m6A in the mice model. In addition, the genes with m6A modification may be affected by methylation related enzymes, thus participating the pathogenesis of MI by regulating apoptosis and inflammation.
Male
;
Animals
;
Mice
;
Mice, Inbred C57BL
;
Methylation
;
Myocardial Infarction/genetics*
;
Myocardium
;
RNA, Messenger/genetics*
;
HSP40 Heat-Shock Proteins
10.Up-regulation of androgen receptor by heat shock protein 27 and miR-1 induces pathogenesis of androgenic alopecia.
Journal of Central South University(Medical Sciences) 2022;47(1):72-78
OBJECTIVES:
The pathogenesis of androgenetic alopecia (AGA) is related to the level of androgen and its metabolic pathways. The binding of androgen and androgen receptor (AR) depends on the assistance of heat shock protein 27 (HSP27). HSP27 combined with microRNAs (miR)-1 can regulate AR levels. However, it is not clear whether HSP27 and miR-1 jointly participate in the pathogenesis of AGA. This study aims to investigate the role of AR up-regulation in the pathogenesis of AGA and underlying mechanisms.
METHODS:
A total of 46 male AGA patients (AGA group), who admitted to the First Affiliated Hospital of Guangzhou Medical University from September 2019 to February 2020, and 52 healthy controls admitted to the same period were enrolled in this study. Serum levels of dihydrotestosterone (DHT) and HSP27 in patients and healthy controls were measured by ELISA. Western blotting was used to detect the protein expression of HSP27 and AR in scalp tissues of patients and the healthy controls. The levels of HSP27, AR, and miR-1 were analyzed using real-time PCR. Human dermal papilla cells were transfected with HSP27 siRNA to inhibit the expression of HSP27. MiR-1 and miR-1 inhibitors were transfected simultaneously or separately into cells and then the changes in AR protein expression were detected.
RESULTS:
The levels of DHT and HSP27 in the AGA group were (361.4±187.7) pg/mL and (89.4±21.8) ng/mL, respectively, which were higher than those in the control group [(281.8±176.6) pg/mL and (41.2±13.7) ng/mL, both P<0.05]. However, there was no significant difference in serum HSP27 and AR levels among AGA patients with different degrees of hair loss (P>0.05). Correlation analysis showed that there was a positive correlation between HSP27 level and DHT level in the AGA patients (P<0.05). The level of HSP27 mRNA in scalp tissue was negatively correlated with that of miR-1 mRNA (P<0.05). Compared with the control group, the levels of HSP27 protein, AR protein, HSP27 mRNA, and AR mRNA in scalp tissues of AGA group were significantly increased (P<0.05). The up-regulation of HSP27 in scalp tissues of AGA patients was closely related to the increased levels of AR. However, the level of miR-1 in scalp tissues of AGA patients was significantly down-regulated, contrary to the expression of AR (P<0.05). Further in cell studies showed that inhibition of HSP27 or miR-1 expression in human dermal papilla cells could inhibit the expression of AR, and inhibition of both HSP27 and miR-1 expression was found to have an accumulative effect on AR, with statistically significant differences (all P<0.05).
CONCLUSIONS
HSP27 could combine with miR-1 to up-regulate AR levels, which is closely related to the development of AGA.
Alopecia/pathology*
;
HSP27 Heat-Shock Proteins/metabolism*
;
Humans
;
Male
;
MicroRNAs/genetics*
;
RNA, Messenger
;
Receptors, Androgen/metabolism*
;
Up-Regulation

Result Analysis
Print
Save
E-mail