1.Effects of moxibustion at "Feishu" (BL13) and "Xinshu" (BL15) on myocardial circPAN3, FOXO3, BNIP3 levels and myocardial fibrosis in rats with chronic heart failure.
Lan LI ; Bing GAO ; Jing HU ; Pan LIU ; Liya LI ; Ruihua LI ; Jing WANG
Chinese Acupuncture & Moxibustion 2025;45(11):1600-1608
OBJECTIVE:
To observe the effects of moxibustion at "Feishu" (BL13) and "Xinshu" (BL15) on the circular RNA of exon 2-5 of the Pan3 gene (circPAN3), forkhead box O3 (FOXO3), and Bcl-2/adenovirus E1B19kDa-interacting protein 3 (BNIP3) in rats with chronic heart failure (CHF), and explore the potential mechanisms of moxibustion in alleviating myocardial fibrosis.
METHODS:
Ten rats of 60 male SPF-grade SD rats were randomly assigned into a normal group. The remaining rats underwent left anterior descending coronary artery (LAD) ligation to establish the CHF model. Forty successfully modeled rats were randomly divided into a model group, a moxibustion group, a rapamycin (RAPA) group, and a moxibustion+RAPA group, with 10 rats in each group. The moxibustion group received mild moxibustion at bilateral "Feishu" (BL13) and "Xinshu" (BL15), 30 min per session. The RAPA group received intraperitoneal injection of the autophagy activator RAPA (1 mg/kg). The moxibustion+RAPA group first received RAPA injection, followed by mild moxibustion at bilateral "Feishu" (BL13) and "Xinshu" (BL15). All interventions were administered once daily for 4 consecutive weeks. After the intervention, cardiac ultrasound was used to measure ejection fraction (EF) and left ventricular fractional shortening (FS). Serum placental growth factor (PLGF) level was determined by ELISA. Myocardial tissue morphology and collagen volume were assessed using hematoxylin-eosin (HE) staining and Masson's trichrome staining. The expression levels of circPAN3, FOXO3, and BNIP3 mRNA in myocardial tissue were detected by real-time PCR, while FOXO3 and BNIP3 protein expression levels were analyzed by Western blot.
RESULTS:
Compared with the normal group, the model group exhibited myocardial cell disorder, severe fibrosis, and increased collagen volume (P<0.01), along with significantly decreased EF, FS, and circPAN3 mRNA expression in myocardial tissue (P<0.01), and the serum PLGF level, as well as FOXO3 and BNIP3 mRNA and protein expression in myocardial tissue were increased (P<0.01). Compared with the model group, the moxibustion group showed reduced myocardial fibrosis, decreased collagen volume (P<0.01), increased EF, FS, and circPAN3 mRNA expression in myocardial tissue (P<0.01), and decreased serum PLGF level as well as FOXO3 and BNIP3 mRNA and protein expression in myocardial tissue (P<0.01). Compared with the model group, the RAPA group showed further deterioration in these parameters (P<0.01). Compared with the RAPA group, the moxibustion+RAPA group exhibited alleviation of myocardial fibrosis, reduced collagen volume (P<0.01), increased EF, FS, and circPAN3 mRNA expression in myocardial tissue (P<0.01), and decreased serum PLGF level as well as FOXO3 and BNIP3 mRNA and protein expression in myocardial tissue (P<0.01).
CONCLUSION
Moxibustion could alleviate myocardial fibrosis in CHF rats, possibly through upregulation of myocardial circPAN3 expression, downregulation of FOXO3 and BNIP3 expression, and inhibition of excessive myocardial autophagy.
Animals
;
Moxibustion
;
Heart Failure/metabolism*
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Myocardium/pathology*
;
RNA, Circular/metabolism*
;
Membrane Proteins/metabolism*
;
Forkhead Box Protein O3/metabolism*
;
Acupuncture Points
;
Humans
;
Fibrosis/genetics*
;
Chronic Disease/therapy*
;
Mitochondrial Proteins
2.Effects of moxibustion at "Xinshu" (BL15) and "Feishu" (BL13) on myocardial transferrin receptor 1 and ferroptosis suppressor protein 1 in chronic heart failure rats.
Bing GAO ; Pan LIU ; Lan LI ; Tiantian GONG ; Ling ZHU ; Liya LI ; Ran XIA ; Jing WANG
Chinese Acupuncture & Moxibustion 2025;45(6):781-790
OBJECTIVE:
To observe the effects of moxibustion at "Xinshu" (BL15) and "Feishu" (BL13) on myocardial transferrin receptor 1 (TfR1), ferroptosis suppressor protein 1 (FSP1), atrial natriuretic peptide (ANP), and typeⅠcollagen myocardial collagen fibers (CollagenⅠ) in rats with chronic heart failure (CHF), and to explore the mechanism of moxibustion for ameliorating myocardial fibrosis and improving cardiac function in CHF.
METHODS:
Fifty SD rats were randomly divided into a normal group (n=10) and a modeling group (n=40). The CHF model was established in the modeling group by ligating the left anterior descending coronary artery. After successful modeling, the rats were randomly divided into a model group (n=9), a moxibustion group (n=8), a rapamycin (RAPA) group (n=9), and a moxibustion+RAPA group (n=9). In the moxibustion group, moxibustion was delivered at bilateral "Feishu"(BL13) and "Xinshu" (BL15), 15 min at each point in each intervention, once daily, for 4 consecutive weeks. In the RAPA group, RAPA solution was administered intraperitoneally at a dose of 1 mg/kg, once daily for 4 consecutive weeks. In the moxibustion+RAPA group, RAPA solution was administered intraperitoneally after moxibustion. Ejection fraction (EF) and left ventricular fractional shortening (FS) were measured after modeling and intervention. After intervention, morphology of cardiac muscle was observed using HE staining and Masson's trichrome staining. Total iron content in myocardial tissue was detected using a colorimetric method. Western blot and qPCR were adopted to detect the protein and mRNA expression of TfR1, FSP1, ANP, and CollagenⅠ in myocardial tissue.
RESULTS:
Compared with the normal group, the EF and FS values decreased (P<0.01); necrosis, edema, degeneration, and arrangement disorder were presented in cardiomyocytes; inflammatory cells were obviously infiltrated, the structure of myocardial fibers was disarranged, the collagen fibers were obviously deposited and fibrosis increased (P<0.01); the total iron content and the protein and mRNA expression of TfR1, ANP, and CollagenⅠ in myocardial tissue were elevated (P<0.01), while the protein and mRNA expression of FSP1 were reduced (P<0.01) in the model group. Compared with the model group, the moxibustion group showed that EF and FS increased (P<0.01); myocardial cell morphology was improved, and myocardial fibrosis was alleviated (P<0.01); the total iron content and the protein and mRNA expression of TfR1, ANP, and CollagenⅠ in myocardial tissue decreased (P<0.01), while the protein and mRNA expression of FSP1 increased (P<0.01, P<0.05). Compared with the model group, the myocardial fibrosis was increased (P<0.05); the total iron content and the protein and mRNA expression of TfR1, ANP, CollagenⅠ in myocardial tissue were increased (P<0.01), while protein and mRNA expression of FSP1 decreased (P<0.01) in the RAPA group. When compared with the RAPA group and the moxibustion + RAPA group, EF and FS were elevated (P<0.01, P<0.05); myocardial cells were improved in morphology, the total iron content and the protein and mRNA expression of TfR1, ANP, and CollagenⅠ in myocardial tissue decreased (P<0.01), while protein and mRNA expression of FSP1 increased (P<0.01) in the moxibustion group. In comparison with the moxibustion + RAPA group, the RAPA group showed the decrease in EF and FS (P<0.01), the worsened myocardial fibrosis (P<0.01), the increase in the total iron content and the protein and mRNA expression of TfR1, ANP, and CollagenⅠ in myocardial tissue (P<0.01), and the decrease in the protein and mRNA expression of FSP1 (P<0.01).
CONCLUSION
Moxibustion at "Feishu" (BL13) and "Xinshu" (BL15) can slow down the process of myocardial fibrosis and improve cardiac function in CHF rats. The mechanism of moxibustion may be related to inhibiting ferroptosis through regulating autophagy.
Animals
;
Rats
;
Heart Failure/physiopathology*
;
Moxibustion
;
Rats, Sprague-Dawley
;
Male
;
Receptors, Transferrin/genetics*
;
Myocardium/metabolism*
;
Acupuncture Points
;
Humans
;
Chronic Disease/therapy*
;
Antigens, CD/metabolism*
3.Research progress on the role of SIRT1 in heart failure.
Yang-Ming ZHANG ; Mai LYU ; Chen-Yang WU ; Yuan-Xi CHEN ; Guo-Lan MA ; An-Tao LUO
Acta Physiologica Sinica 2025;77(2):361-373
Heart failure (HF) is a common end-stage clinical manifestation of cardiovascular diseases, imposing substantial health-related burdens worldwide. With its high mortality rates and poor long-term prognosis, there is a pressing need for novel therapies. SIRT1, a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, has anti-cardiovascular aging properties and other cardioprotective effects, attracting much research attention in recent years. In addition, SIRT1 plays an important role in HF pathophysiology. This review summarized the roles of SIRT1 and its activators in HF, the changes of SIRT1 gene expression in cardiac tissues from animal models and HF patients, and the current status of clinical trials investigating SIRT1 activators as potential therapies for HF. This will provide new ideas for further exploration of pathological mechanisms and the development of clinical prevention strategies for HF.
Heart Failure/metabolism*
;
Sirtuin 1/genetics*
;
Humans
;
Animals
4.Xinyang Tablets ameliorate ventricular remodeling in heart failure via FTO/m6A signaling pathway.
Dong-Hua LIU ; Zi-Ru LI ; Si-Jing LI ; Xing-Ling HE ; Xiao-Jiao ZHANG ; Shi-Hao NI ; Wen-Jie LONG ; Hui-Li LIAO ; Zhong-Qi YANG ; Xiao-Ming DONG
China Journal of Chinese Materia Medica 2025;50(4):1075-1086
The study was conducted to investigate the mechanism of Xinyang Tablets( XYP) in modulating the fat mass and obesity-associated protein(FTO)/N6-methyladenosine(m6A) signaling pathway to ameliorate ventricular remodeling in heart failure(HF). A mouse model of HF was established by transverse aortic constriction(TAC). Mice were randomized into sham, model, XYP(low, medium, and high doses), and positive control( perindopril) groups(n= 10). From day 3 post-surgery, mice were administrated with corresponding drugs by gavage for 6 consecutive weeks. Following the treatment, echocardiography was employed to evaluate the cardiac function, and RT-qPCR was employed to determine the relative m RNA levels of key markers, including atrial natriuretic peptide( ANP), B-type natriuretic peptide( BNP), β-myosin heavy chain(β-MHC), collagen type I alpha chain(Col1α), collagen type Ⅲ alpha chain(Col3α), alpha smooth muscle actin(α-SMA), and FTO. The cardiac tissue was stained with Masson's trichrome and wheat germ agglutinin(WGA) to reveal the pathological changes. Immunohistochemistry was employed to detect the expression levels of Col1α, Col3α, α-SMA, and FTO in the myocardial tissue. The m6A modification level in the myocardial tissue was measured by the m6A assay kit. An H9c2 cell model of cardiomyocyte injury was induced by angiotensin Ⅱ(AngⅡ), and small interfering RNA(siRNA) was employed to knock down FTO expression. RT-qPCR was conducted to assess the relative m RNA levels of FTO and other genes associated with cardiac remodeling. The m6A modification level was measured by the m6A assay kit, and Western blot was employed to determine the phosphorylated phosphatidylinositol 3-kinase(p-PI3K)/phosphatidylinositol 3-kinase(PI3K) and phosphorylated serine/threonine kinase(p-Akt)/serine/threonine kinase(Akt) ratios in cardiomyocytes. The results of animal experiments showed that the XYP treatment significantly improved the cardiac function, reduced fibrosis, up-regulated the m RNA and protein levels of FTO, and lowered the m6A modification level compared with the model group. The results of cell experiments showed that the XYP-containing serum markedly up-regulated the m RNA level of FTO while decreasing the m6A modification level and the p-PI3K/PI3K and p-Akt/Akt ratios in cardiomyocytes. Furthermore, FTO knockdown reversed the protective effects of XYP-containing serum on Ang Ⅱ-induced cardiomyocyte hypertrophy. In conclusion, XYP may ameliorate ventricular remodeling by regulating the FTO/m6A axis, thereby inhibiting the activation of the PI3K/Akt signaling pathway.
Animals
;
Ventricular Remodeling/drug effects*
;
Heart Failure/physiopathology*
;
Signal Transduction/drug effects*
;
Mice
;
Male
;
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice, Inbred C57BL
;
Humans
;
Adenosine/analogs & derivatives*
;
Myocytes, Cardiac/metabolism*
;
Disease Models, Animal
5.Effect of Chaihu Jia Longgu Muli Decoction on apoptosis in rats with heart failure after myocardial infarction through IκBα/NF-κB pathway.
Miao-Yu SONG ; Cui-Ling ZHU ; Yi-Zhuo LI ; Xing-Yuan LI ; Gang LIU ; Xiao-Hui LI ; Yan-Qin SUN ; Ming-Yuan DU ; Lei JIANG ; Chao-Chong YUE
China Journal of Chinese Materia Medica 2025;50(8):2184-2192
This study aims to explore the protective effect of Chaihu Jia Longgu Muli Decoction on rats with heart failure after myocardial infarction, and to clarify its possible mechanisms, providing a new basis for basic research on the mechanism of classic Chinese medicinal formula-mediated inflammatory response in preventing and treating heart failure induced by apoptosis after myocardial infarction. A heart failure model after myocardial infarction was established in rats by coronary artery ligation. The rats were divided into sham group, model group, and low, medium, and high-dose groups of Chaihu Jia Longgu Muli Decoction, with 10 rats in each group. The low-dose, medium-dose, and high-dose groups of Chaihu Jia Longgu Muli Decoction were given 6.3, 12.6, and 25.2 g·kg~(-1) doses by gavage, respectively. The sham group and model group were given an equal volume of distilled water by gavage once daily for four consecutive weeks. Cardiac function was assessed using color Doppler echocardiography. Myocardial pathology was detected by hematoxylin-eosin(HE) staining, apoptosis was measured by TUNEL assay, and mitophagy was observed by transmission electron microscopy. The levels of tumor necrosis factor-α(TNF-α), interleukin(IL)-1β, and N-terminal pro-B-type natriuretic peptide(NT-proBNP) in serum were detected by enzyme-linked immunosorbent assay(ELISA). The expression of apoptosis-related proteins B-cell lymphoma 2(Bcl-2), Bcl-2-associated X protein(Bax), and cleaved caspase-3 was detected by Western blot. Additionally, the expression of phosphorylated nuclear transcription factor-κB(NF-κB) p65(p-NF-κB p65)(upstream) and nuclear factor kappa B inhibitor alpha(IκBα)(downstream) in the NF-κB signaling pathway was assessed by Western blot. The results showed that compared with the sham group, left ventricular ejection fraction(LVEF) and left ventricular short axis shortening(LVFS) in the model group were significantly reduced, while left ventricular end diastolic diameter(LVEDD) and left ventricular end systolic diameter(LVESD) increased significantly. Myocardial tissue damage was severe, with widened intercellular spaces and disorganized cell arrangement. The apoptosis rate was increased, and mitochondria were enlarged with increased vacuoles. Levels of TNF-α, IL-1β, and NT-proBNP were elevated, indicating an obvious inflammatory response. The expression of pro-apoptotic factors Bax and cleaved caspase-3 increased, while the anti-apoptotic factor Bcl-2 decreased. The expression of p-NF-κB p65 was upregulated, and the expression of IκBα was downregulated. In contrast, the Chaihu Jia Longgu Muli Decoction groups showed significantly improved of LVEF, LVFS and decreased LVEDD, LVESD compared to the model group. Myocardial tissue damage was alleviated, and intercellular spaces were reduced. The apoptosis rate decreased, mitochondrial volume decreased, and the levels of TNF-α, IL-1β, and NT-proBNP were lower. The expression of pro-apoptotic factors Bax and cleaved caspase-3 decreased, while the expression of the anti-apoptotic factor Bcl-2 increased. Additionally, the expression of p-NF-κB p65 decreased, while IκBα expression increased. In summary, this experimental study shows that Chaihu Jia Longgu Muli Decoction can reduce the inflammatory response and apoptosis rate in rats with heart failure after myocardial infarction, which may be related to the regulation of the IκBα/NF-κB signaling pathway.
Animals
;
Apoptosis/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Myocardial Infarction/physiopathology*
;
Male
;
NF-kappa B/genetics*
;
Heart Failure/etiology*
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
NF-KappaB Inhibitor alpha/genetics*
;
Humans
;
Tumor Necrosis Factor-alpha/genetics*
6.Research progress on role of competitive endogenous RNA networks in heart failure and intervention by traditional Chinese medicine.
Pei-Li YANG ; Li-Rong ZHENG ; Ying-Qiang ZHAO
China Journal of Chinese Materia Medica 2025;50(12):3232-3243
Heart failure(HF) is the terminal stage of various cardiovascular diseases, characterized by high morbidity and mortality, and it represents one of the major disease burdens for families and society. In recent years, as research on the molecular mechanisms of HF has deepened, a competing endogenous RNA(ceRNA) network mediated by long non-coding RNAs(lncRNAs) and circular RNAs(circRNAs) has been gradually constructed. Extensive research results have confirmed that the ceRNA network is widely involved in pathological processes such as inflammation, oxidative stress, myocardial hypertrophy, apoptosis, remodeling of extracellular matrix components and structure, and ferroptosis in HF. It reveals the complex pathological mechanisms of HF at the epigenetic level. Traditional Chinese medicine(TCM) plays a unique role in improving symptoms and prognosis of HF and intervenes in the ceRNA network in HF through multi-level and multi-target mechanisms. It improves key pathological processes such as myocardial fibrosis and inflammation, making progress in treating HF at the molecular level. This article summarized recent Chinese and international research on the regulatory mechanisms of ceRNA networks in HF, elaborated on the mechanisms of action of ceRNA networks in different pathological stages of HF, and summarized how effective components and compounds of TCM intervene in the ceRNA network to improve HF, so as to refine the molecular mechanisms of HF and provide directions for more precise molecular targeted therapeutic strategies.
Humans
;
Heart Failure/metabolism*
;
Medicine, Chinese Traditional
;
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
RNA, Circular/genetics*
;
RNA, Long Noncoding/metabolism*
;
Gene Regulatory Networks/drug effects*
;
RNA/metabolism*
;
RNA, Competitive Endogenous
7.Cardiofaciocutaneous syndrome caused by microdeletion of chromosome 19p13.3: a case report and literature review.
Cui-Yun LI ; Ying XU ; Ru-En YAO ; Ying YU ; Xue-Ting CHEN ; Wei LI ; Hui ZENG ; Li-Ting CHEN
Chinese Journal of Contemporary Pediatrics 2025;27(7):854-858
This article reports a child with cardioaciocutaneous syndrome (CFCS) caused by a rare microdeletion of chromosome 19p13.3, and a literature review is conducted. The child had unusual facies, short stature, delayed mental and motor development, macrocephaly, and cardiac abnormalities. Whole-exome sequencing identified a 1 040 kb heterozygous deletion in the 19p13.3 region of the child, which was rated as a "pathogenic variant". This is the first case of CFCS caused by a loss-of-function mutation reported in China, which enriches the genotype characteristics of CFCS. It is imperative to enhance the understanding of CFCS in children. Early identification based on its clinical manifestations should be pursued, and genetic testing should be performed to facilitate diagnosis.
Humans
;
Chromosome Deletion
;
Chromosomes, Human, Pair 19/genetics*
;
Ectodermal Dysplasia/genetics*
;
Facies
;
Failure to Thrive/genetics*
;
Heart Defects, Congenital/genetics*
8.Differential expressions of exosomal miRNAs in patients with chronic heart failure and hyperuricemia: diagnostic values of miR-27a-5p and miR-139-3p.
Zhiliang CHEN ; Yonggang YANG ; Xia HUANG ; Yan CHENG ; Yuan QU ; Qiqi HENG ; Yujia FU ; Kewei LI ; Ning GU
Journal of Southern Medical University 2025;45(1):43-51
OBJECTIVES:
To analyze the differentially expressed exosomal miRNAs in patients with chronic heart failure (CHF) complicated by hyperuricemia (HUA) and explore their potential as novel diagnostic molecular markers and their target genes.
METHODS:
This study was conducted among 30 CHF patients with HUA (observation group) and 30 healthy volunteers (control group) enrolled between September, 2020 and September, 2023. Peripheral blood samples were collected from 6 CHF patients with HUA for analyzing exosomal miRNAs by high-throughput sequencing, and the results were validated in the remaining 24 patients using qRT-PCR. GO and KEGG enrichment analyses were performed to predict the the target genes of the identified differential miRNAs. We also validated the differentially expressed miRNAs by animal experiment.
RESULTS:
A total of 42 differentially expressed exosomal miRNAs were detected in observation group by high-throughput sequencing; among them, miR-27a-5p was significantly upregulated (P=0.000179), and miR-139-3p was significantly downregulated (P=0.000058). In the 24 patients with both CHF and PUA, qRT-PCR validated significant upregulation of miR-27a-5p (P=0.004) and downregulation of miR-139-3p (P=0.005) in serum exosomes. When combined, miR-27a-5p and miR-139-3p had a maximum area under the curve (AUC) of 0.899 (95% CI: 0812-0.987) for predicting CHF complicated by HUA. GO and KEGG enrichment analyses suggested that the differential expressions of miR-27a-5p and miR-139-3p was associated with the activation of the AMPK-mTOR signaling pathway to activate the autophagic response. We obtained the same conclusion from animal experiment.
CONCLUSIONS
Upregulated exosomal miR-27a-5p combined with downregulated exosomal miR-139-3p expression can serve as a novel molecular marker for diagnosis of CHF complicated by HUA, and their differential expression may promote autophagy in cardiomyocytes by activating the AMPK-mTOR signaling pathway.
Humans
;
Hyperuricemia/diagnosis*
;
Heart Failure/genetics*
;
MicroRNAs/metabolism*
;
Exosomes/metabolism*
;
Chronic Disease
;
Male
;
Female
;
Middle Aged
;
Animals
9.Lingguizhugan Decoction improves chronic heart failure by synergistically modulating ?1-AR/Gs/GRKs/?-arrestin signaling bias.
Shuting GUO ; Lei XIA ; Songru YANG ; Yueyang LIANG ; Xiaoli SHAN ; Pei ZHAO ; Wei GUO ; Chen ZHANG ; Ming XU ; Ning SUN ; Rong LU ; Huihua CHEN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(5):560-571
Lingguizhugan Decoction (LGZG) demonstrates significant efficacy in treating various cardiovascular diseases clinically, yet its precise mechanism of action remains elusive. This study aimed to elucidate the potential mechanisms and effects of LGZG on isoproterenol (ISO) continuous stimulation-induced chronic heart failure (CHF) in mice, providing direct experimental evidence for further clinical applications. In vivo, continuous ISO infusion was administered to mice, and ventricular myocytes were utilized to explore LGZG?s potential mechanism of action on the ?1-adrenergic receptor (?1-AR)/Gs/G protein-coupled receptor kinases (GRKs)/?-arrestin signaling deflection system in the heart. The findings reveal that LGZG significantly reduced the messenger ribonucleic acid (mRNA) expression of hypertrophy-related biomarkers [atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP)] and improved cardiac remodeling and left ventricular diastolic function in mice with ISO-induced CHF. Furthermore, LGZG inhibited the overactivation of Gs/cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling and downregulated the downstream transcriptional activity of cAMP-response element binding protein (CREB) and the expression of the coactivator CBP/P300. Notably, LGZG downregulated the expression of ?-arrestin1 and GRK 2/3/5 while upregulating the expression of ?1-AR and ?-arrestin2. These results suggest that LGZG inhibits Gs/cAMP/PKA signaling and ?-arrestin/GRK-mediated desensitization and internalization of ?1-AR, potentially exerting cardioprotective effects through the synergistic regulation of the ?1-AR/Gs/GRKs/?-arrestin signaling deflection system via multiple pathways.
Animals
;
Heart Failure/genetics*
;
Signal Transduction/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Mice
;
Male
;
G-Protein-Coupled Receptor Kinases/genetics*
;
Mice, Inbred C57BL
;
Humans
;
Isoproterenol
;
Arrestins/genetics*
;
Chronic Disease
10.Bioinformatics and animal experiments reveal mechanism of Linggui Zhugan Decoction in ameliorating chronic heart failure after myocardial infarction via HIF-1α/HO-1 signaling pathway.
Han REN ; Shu-Shu WANG ; Wan-Zhu ZHAO ; Shao-Hua XU ; Ke-Dong WEI ; Wan-Wan WU ; Sheng-Yi HUANG ; Rui CAI ; Yuan-Hong ZHANG ; Jin-Ling HUANG
China Journal of Chinese Materia Medica 2024;49(23):6407-6416
This study aims to investigate the effect of Linggui Zhugan Decoction(LGZGD) on autophagy in the mouse model of chronic heart failure(CHF) induced by myocardial infarction(MI), as well as the regulatory effect of LGZGD on the hypoxia-inducible factor-1α(HIF-1α)/heme oxygenase-1(HO-1) signaling pathway, based on bioinformatics and animal experiments. The active ingredients and corresponding targets of LGZGD were retrieved from the Traditional Chinese Medicine Systems Pharmacology and Analysis Database, and GEO, GeneCards, and DisGeNET were searched for the disease targets. Cytoscape was used to establish a "drug-component-target" network. The protein-protein interaction(PPI) network analysis was performed on STRING. R language was used for Gene Ontology(GO) and Kyoto Encycloperfia of Genes and Genomes(KEGG) enrichment analyses. Molecular docking was adopted to validate the core targets. The mouse model of MI-induced CHF was established by surgical ligation of the left anterior descending coronary artery. The modeled mice were assigned into the sham, model, low-, medium-, and high-dose(2.34, 4.68, and 9.36 g·kg~(-1), respectively) LGZGD, and captopril(3.25 mg·kg~(-1)) groups. After continuous administration for 6 weeks, a Doppler ultrasound imaging system was used to examine the heart function indicators: left ventricular ejection fraction(LVEF), left ventricular fractional shortening(LVFS), left ventricular end-systolic dimension(LVIDs), and left ventricular end-diastolic dimension(LVIDd). The myocardial tissue was stained with hematoxylin-eosin for the observation of morphological changes. The mRNA levels of microtubule-associated protein 1 light chain 3 beta(LC3B), Beclin1, p62, HIF-1α, and HO-1 in the myocardial tissue were determined by RT-qPCR. The protein levels of LC3B, beclin1, p62, autophagy-related protein 5(ATG5), HIF-1α, and HO-1 were determined by Western blot. The results showed that 103 active components of LGZGD, corresponding to 224 targets, were obtained. A total of 3 485 and 6 165 targets related to MI and CHF, respectively, were retrieved. The GSE16499 dataset obtained 3 263 differentially expressed genes. There were 31 common targets. The top 3 core active components were quercetin, naringenin, and 1-methoxyphaseollidin. The topology analysis results showed that the core targets were MAPK3, HMOX1(HO-1), MYC, ADRB2, PPARD, and HIF1A(HIF-1α). The molecular docking results showed strong binding between the core targets and the main active components of LGZGD. LGZGD significantly improved the heart function and alleviated the pathological changes in the myocardial tissue of mice. Western blot and RT-qPCR results showed that the HIF-1α/HO-1 signaling pathway and autophagy were activated in the model group. LGZGD up-regulated the levels of LC3B, Beclin1, ATG5, HIF-1α, and HO-1 while down-regulating the mRNA and protein levels of p62. In summary, LGZGD can enhance autophagy and improve the heart function in the mouse model of CHF after MI by upregulating the HIF-1α/HO-1 signaling pathway.
Animals
;
Drugs, Chinese Herbal/chemistry*
;
Myocardial Infarction/drug therapy*
;
Heart Failure/physiopathology*
;
Mice
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Signal Transduction/drug effects*
;
Male
;
Computational Biology
;
Heme Oxygenase-1/genetics*
;
Molecular Docking Simulation
;
Protein Interaction Maps/drug effects*
;
Mice, Inbred C57BL
;
Humans
;
Chronic Disease
;
Disease Models, Animal

Result Analysis
Print
Save
E-mail