1.Hearing loss prevalence and burden of disease in China: Findings from provincial-level analysis.
Yu WANG ; Yang XIE ; Minghao WANG ; Mengdan ZHAO ; Rui GONG ; Ying XIN ; Jia KE ; Ke ZHANG ; Shaoxing ZHANG ; Chen DU ; Qingchuan DUAN ; Fang WANG ; Tao PAN ; Furong MA ; Xiangyang HU
Chinese Medical Journal 2025;138(1):41-48
BACKGROUND:
Without timely and effective rehabilitation, hearing loss may profoundly affect human life quality. China has a large population of hearing-impaired individuals, which imposes a heavy health burden on society. Moreover, this population is projected to increase rapidly owing to China's aging society.
METHODS:
We used data from a population-representative epidemiological investigation of hearing loss and ear diseases in four Chinese provinces. We estimated the national prevalence using multiple linear regression of the age-group proportions and prevalence in 31 provinces with clustering analysis. We used years lived with disability (YLDs) to analyze the disease burden and forecasted the prevalence of hearing loss by 2060 in China.
RESULTS:
An estimated 115 million people had moderate-to-complete hearing loss in 2015 across the 31 provinces of China (8.4% of 1.37 billion people). Of these, 85.7% were older than age 50 years (99 million people) and 2.4% were younger than 20 years old (2.8 million people). Of all YLDs attributable to hearing loss, 68.9% were attributable to moderate-to-complete cases. By 2060, a projected 242 million people in China will have moderate-to-complete hearing loss, a 110.0% increase from 2015.
CONCLUSIONS
The hearing loss prevalence in China is high. Population aging and socioeconomic factors substantially affect the prevalence and severity of hearing loss and the disease burden. The prevalence and severity of hearing loss are unevenly distributed across different provinces. Future public health policies should take these trends and regional variations into account.
Humans
;
China/epidemiology*
;
Hearing Loss/epidemiology*
;
Prevalence
;
Middle Aged
;
Male
;
Female
;
Adult
;
Aged
;
Adolescent
;
Young Adult
;
Child
;
Child, Preschool
;
Infant
;
Aged, 80 and over
;
Cost of Illness
2.Bibliometric and bioinformatics analysis of genetic literature on susceptibility to noise induced hearing loss.
Hui Min WANG ; Jia Di GUO ; Bo Shen WANG ; Bao Li ZHU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2023;41(1):43-47
Objective: To summarize and analyse of literature on the susceptibility genes of noise induced hearing loss (NIHL) , and the key genes were screened and obtained by bioinformatics method, so as to provide reference for the prevention research of NIHL. Methods: In September 2021, Based on CNKI, NCBI Pubmed database and Web of Science database, this paper conducted bibliometric analysis and bioinformatics analysis on the genetic literature related to the susceptibility to noise-induced hearing loss from 1999 to 2020. Endnote X9 software and the WPS office software were used for bibliometric analysis, and online software STRING and Cytoscape software were used for bioinformatics analysis. Results: A total of 131 literatures were included in the study, involving 40 genes in total. Bibliometric analysis shows that 131 papers which included 36 Chinese articles and 95 English articles were published in 63 biomedical journals; the highest number of published articles was 19 in 2020. Bioinformatics analysis suggests that GAPDH、SOD2、SOD1、CAT、CASP3、IL6 and other genes play a key role in the interaction network. The involved pathways mainly include MAP2K and MAPK activations, PTEN regulation, P53-depardent G1 DNA damage response, signaoling by BRAF and RAF fusions and soon. Conclusion: The study of noise induced hearing loss involves multi gene biological information, and bioinformatics analysis is helpful to predict the occurrence and development of noise induced hearing loss.
Humans
;
Hearing Loss, Noise-Induced/epidemiology*
;
Genetic Predisposition to Disease
;
Polymorphism, Single Nucleotide
;
Computational Biology
;
Bibliometrics
;
Noise, Occupational
3.Analysis of influencing factors of high frequency hearing loss in workers exposed to noise based on multilevel model.
Hai ZHANG ; Zhong ZHEN ; Yong Xiang YAO ; Liang Ying MEI
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(11):845-850
Objective: To understand the current situation of high-frequency hearing loss of workers exposed to occupational noise in Hubei Province and its multi-level influencing factors. Methods: In June 2021, the basic information, occupational history, physical examination results and other relevant information in the "Occupational Health Examinations Case Cards" for noise workers in Hubei Province in 2020 were extracted from the subsystem of the "China Disease Prevention and Control Information System". Multilevel level of logistic model was used to analyze the related factors of high-frequency hearing loss of noise-exposed workers. Results: In 2020, the incidence rate of occupational high-frequency hearing loss in Hubei Province was 8.25% (6450/78152), and the incidence rate in various regions of the province ranged from 1.13% to 19.87%. At the individual level, male, ≥ 30 years of age, 6-10 years of service, small and micro enterprises, as well as construction, mining, manufacturing, transportation and rental services were the risk factors for high-frequency hearing loss (P<0.05). The risk of high-frequency hearing loss among workers in foreign-funded enterprises was significantly lower than that of workers in state-owned/collective enterprises (P<0.05). At the regional level, the younger the age of the employees, the lower the risk of high-frequency hearing loss (P<0.05). There was no significant correlation between the regional economic level and the risk of high-frequency hearing loss (P>0.05) . Conclusion: The incidence rate of occupational high-frequency hearing loss in Hubei Province is low in 2020, but the incidence rate varies greatly in different regions of the province, mainly due to differences in employment age, while the development of regional economic level has not reduced the risk of occupational high-frequency hearing loss.
Male
;
Humans
;
Child
;
Hearing Loss, High-Frequency
;
Hearing Loss, Noise-Induced/diagnosis*
;
Occupational Diseases/epidemiology*
;
Occupational Exposure/adverse effects*
;
Noise, Occupational/adverse effects*
4.Association between occupational noise exposure and the risk of cardiovascular diseases.
Dong Ming WANG ; Wen Zhen LI ; Yang XIAO ; Xiao Bing FENG ; Wei LIU ; Wei Hong CHEN
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(3):183-187
Objective: To explore the association between occupational noise exposure and cardiovascular disease (CVD) risk in a large Chinese population. Methods: In December 2019, the study included 21412 retired participants from the Dongfeng-Tongji Cohort Study at baseline from September 2008 to June 2010, occupational noise exposure was evaluated through workplace noise level and/or the job titles. In a subsample of 8931 subjects, bilateral hearing loss was defined as a pure-tone mean of 25 dB or higher at 0.5, 1 , 2, and 4 kHz in both ears. Logistic regression models were used to explore the association of occupational noise exposure, bilateral hearing loss with 10-year CVD risk. Results: Compared with participants without occupational noise exposure, the 10-year CVD risk was significantly higher for noise exposure duration ≥20 years (OR=1.20, 95%CI:1.01-1.41 , P=0.001) after adjusting for potential confounders. In the sex-specific analysis, the association was only statistically significant in males (OR=2.34, 95%CI: 1.18-4.66, P<0.001) , but not in females (OR=1.15, 95%CI:0.97-1.37, P=0.153). In the subsample analyses, bilateral hearing loss, which was an indicator for exposure to loud noise, was also associated with a higher risk of 10-year CVD (OR= 1.17, 95% CI:1.05-1.44, P <0.001) , especially for participants who were males (OR =1.24, 95% CI:1.07-2.30, P<0.001) , aged equal and over 60 years old (OR=2.30, 95%CI: 1.84-2.88, P<0.001) , and exposed to occupational noise (OR=1.66, 95%CI: 1.02-2.70, P=0.001). Conclusion: Occupational noise exposure may be a risk factor for CVD.
Aged
;
Cardiovascular Diseases/epidemiology*
;
Cohort Studies
;
Female
;
Hearing Loss, Bilateral/complications*
;
Hearing Loss, Noise-Induced/epidemiology*
;
Humans
;
Male
;
Middle Aged
;
Noise, Occupational/adverse effects*
;
Occupational Diseases/epidemiology*
;
Occupational Exposure/adverse effects*
8.Research progress on non-steady state noise-induced hearing loss.
Chinese Journal of Industrial Hygiene and Occupational Diseases 2021;39(7):550-554
Non-steady state noise has become the main type of workplace noise. Compared with steady state noise, non-steady state noise may cause more serious hearing loss. This paper reviews the new situation of occupational hearing loss caused by non-steady state noise exposure, the overview of international noise exposure assessment standards and new challenges, and the new evidence of non-steady state noise induced hearing loss, so as to provide the basis for the future research of non-steady state noise induced hearing loss.
Auditory Threshold
;
Hearing Loss, Noise-Induced
;
Humans
;
Noise
;
Noise, Occupational/adverse effects*
;
Occupational Diseases/epidemiology*
10.Body mass index, waist circumference, and risk of hearing loss: a meta-analysis and systematic review of observational study.
Jin-Rong YANG ; Khemayanto HIDAYAT ; Cai-Long CHEN ; Yun-Hong LI ; Jia-Ying XU ; Li-Qiang QIN
Environmental Health and Preventive Medicine 2020;25(1):25-25
BACKGROUND:
Emerging evidence implicates excess weight as a potential risk factor for hearing loss. However, this association remained inconclusive. Therefore, we aimed to systematically and quantitatively review the published observational study on the association between body mass index (BMI) or waist circumference (WC) and hearing loss.
METHODS:
The odds ratios (ORs) or relative risks (RRs) with their 95% confidence intervals (CIs) were pooled under a random-effects model. Fourteen observational studies were eligible for the inclusion in the final analysis.
RESULTS:
In the meta-analysis of cross-sectional studies, the ORs for prevalent hearing loss were 1.10 (95% CI 0.88, 1.38) underweight, 1.14 (95% CI 0.99, 1.32) for overweight, OR 1.40 (95% CI 1.14, 1.72) for obesity, 1.14 (95% CI 1.04, 1.24) for each 5 kg/m increase in BMI, and 1.22 (95% CO 0.88. 1.68) for higher WC. In the meta-analysis of longitudinal studies, the RRs were 0.96 (95% CI 0.52, 1.79) for underweight, 1.15 (95% CI 1.04, 1.27) for overweight, 1.38 (95% CI 1.07, 1.79) for obesity, 1.15 (95% CI 1.01, 1.30) for each 5 kg/m increase in BMI, and 1.11 (95% CI 1.01, 1.22) for higher WC.
CONCLUSIONS
In summary, our findings add weight to the evidence that elevated BMI and higher WC may be positively associated with the risk of hearing loss.
Adiposity
;
Adult
;
Aged
;
Aged, 80 and over
;
Body Mass Index
;
Female
;
Hearing Loss
;
epidemiology
;
etiology
;
Humans
;
Male
;
Middle Aged
;
Odds Ratio
;
Prevalence
;
Risk Factors
;
Waist Circumference
;
Young Adult

Result Analysis
Print
Save
E-mail