1.The study of detection and etiology of delayed sensorineural hearing loss in children.
Yanling HU ; Zhongfang XIA ; Cong YAO
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(3):260-264
Objective:To investigate the detection of the age and pathway and the etiology of sensorineural hearing loss in children, and to guide the early diagnosis. Methods:A retrospective analysis was conducted on the children who passed neonatal hearing screening but were diagnosed with sensorineural hearing loss in our department from January 2019 to September 2022. The clinical characteristics of 66 children with complete medical history, audiology examination, imaging examination and genetic detection of hearing loss were studied. The age group, detection route and degree of hearing loss were analyzed statistically. Results:①The children were aged from 7 months to 12 years old, and most of them were over 3 years old. ②The ways of detection were as follows: 23 cases(34.85%) due to abnormal hearing, 21 cases(31.82%) due to poor language, 15 cases(22.73%) found during physical examination, and 7 cases(10.61%) found with otitis media. Physical examination findings were concentrated in children aged ≤1 year old or 3-6 years old. ③Among the 56 cases, the degree of binaural hearing loss ranged from mild to severe, and most of those within 3 years of age had severe or above hearing loss. There were statistically significant differences in the degree of hearing loss distribution among different detection approaches(P<0.001). Most children with hearing or language problems had moderate to severe or above hearing loss, and the proportion was significantly higher than that of children detected during physical examination or otitis media. ④There were 21 cases(31.82%) with a pathogenic mutation of GJB2 gene and 9 cases(13.64%) of large vestibular aqueduct syndrome, 7 of which were related to SLC26A4 gene mutation. There were 8 cases(12.12%) with high risk factors of hearing loss. There was 1 case(1.52%) with progressive speech loss after severe infection and high fever and 1 case(1.52%) with unilateral cochlear nerve dysplasia. Conclusion:Delayed hearing loss can occur at all ages and was not easy to be detected in time. The etiology was related to the mutation of deafness-related genes and the high risk factors of hearing loss. Combining hearing and gene screening in childhood, guiding parents to observe children's hearing response and language development, especially strengthening the follow-up of children with high risk factors for hearing loss, is conducive to the early diagnosis of delayed hearing loss.
Humans
;
Hearing Loss, Sensorineural/genetics*
;
Retrospective Studies
;
Child
;
Child, Preschool
;
Infant
;
Connexin 26
;
Male
;
Female
;
Connexins/genetics*
;
Mutation
;
Sulfate Transporters
;
Hearing Tests
2.The natural history of the relationship between OTOF mutation-related genotypes and audiological phenotypes.
Lei HAN ; Liheng CHEN ; Sha YU ; Yuxin CHEN ; Luoying JIANG ; Shuang HAN ; Jiake ZHONG ; Luo GUO ; Huawei LI ; Yilai SHU
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(4):379-385
Sensorineural hearing loss is one of the most common sensory disorders. In recent years, auditory neuropathy spectrum disorders caused by mutations in the OTOF gene have garnered significant attention worldwide, marking it as the first deafness gene with breakthroughs in gene therapy. Most patients with OTOF gene mutations present with stable, congenital, or prelingual onset of hearing loss, which can range from severe to profound and even complete hearing loss. However, a minority of patients may exhibit mild to moderate progressive hearing loss or temperature-sensitive hearing loss. This review further explores the genotype-phenotype relationship of the OTOF gene based on reported cases in China and abroad. Additionally, we analyze the characteristics of the natural history of OTOF gene mutations within the Chinese population. This study aims to provide a reference for the clinical diagnosis, evaluation, and treatment of hearing loss associated with OTOF gene mutations.
Humans
;
Mutation
;
Phenotype
;
Genotype
;
Hearing Loss, Sensorineural/genetics*
;
Membrane Proteins/genetics*
3.Phenotypic and pathogenic variant analysis of an X-linked dominant inherited non-syndromic hearing loss pedigree.
Ziyu ZHAI ; Hongen XU ; Le WANG ; Xiaodan ZHU ; Yuan ZHANG ; Ling LI ; Xiaosai ZHANG ; Tingxian LI ; Kaixi WANG ; Fanglei YE
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(6):570-577
Objective:X-linked non-syndromic hearing loss is an extremely rare type of hearing impairment. This study conducted a phenotypic and genetic analysis of a family with X-linked dominant inheritance to explore the causes of hearing loss. Methods:Clinical data were collected from a patient with non-syndromic hearing loss who visited the Otorhinolaryngology Department of the First Affiliated Hospital of Zhengzhou University in June 2023. Phenotypic and genetic analyses were performed on family members, including audiometric tests, whole-exome sequencing, and PCR-Sanger sequencing verification. Audiological assessments comprised pure-tone audiometry, impedance audiometry, auditory brainstem response, and otoacoustic emission tests. Results:The affected individuals in this pedigree have X-linked dominant non-syndromic deafness caused by mutations in the SMPX gene. The proband, along with their mother and maternal grandmother, exhibit varying degrees of sensorineural hearing loss. Whole-exome sequencing revealed a novel pathogenic variant, NM_014332.3: c. 133-2A>C, in the SMPX gene in the proband. Sanger sequencing confirmed that the proband, proband's mother, and grandmother all carried this pathogenic variant. Conclusion:This study reports a novel pathogenic variant in the SMPX gene, providing additional medical evidence for the diagnosis and treatment of X-linked dominant inherited non-syndromic hearing loss. It enriches the mutation spectrum of the SMPX gene.
Humans
;
Pedigree
;
Mutation
;
Phenotype
;
Male
;
Hearing Loss, Sensorineural/genetics*
;
Exome Sequencing
;
Female
;
Adult
;
Hearing Loss/genetics*
;
Evoked Potentials, Auditory, Brain Stem
;
Muscle Proteins
4.Analysis and clinical characteristics of SLC26A4 gene mutations in 72 cases of large vestibular aqueduct syndrome.
Yuqing LIU ; Wenyu XIONG ; Yu LU ; Lisong LIANG ; Kejie YANG ; Li LAN ; Wei HAN ; Qing YE ; Min WANG ; Yuan ZHANG ; Fangying TAO ; Zuwei CAO ; Wei HUANG ; Xue YANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(7):603-609
Objective:To explore the genetic and clinical characteristics of Guizhou patients with enlarged vestibular aqueduct(EVA) syndrome through combined SLC26A4 variant analysis and clinical phenotype analysis. Methods:Seventy-two EVA patients underwent comprehensive genetic testing using a multiplex PCR-based deafness gene panel and next-generation sequencing(NGS). The audiological and temporal bone imaging characteristics were compared across mutation subtypes. Results:A total of 27 pathogenic loci of SLC26A4 were detected in 72 patients, including c.919-2A>G in 79.2%(57/72). A novel deletion(c.1703_1707+6del) was discovered. Among 65 cases, truncated mutations were 89.2%(58/65), 52.3%(34/65), 28(43.1%) and 7(10.8%). No significant differences were observed in the midpoint diameter of the vestibular aqueduct and the incidence of incomplete partitioning typeⅡ(IP-Ⅱ) of the cochlea among the three groups of patients. Moreover, there was no difference in the midpoint diameter of different vestibular pipes or the combination with IP-Ⅱ. Conclusion:The most common mutation site of SLC26A4 in EVA patients in Guizhou is c.919-2A>G, though genotype-phenotype correlations remain elusive. The detection of 27 mutation sites and the discovery of new mutation sites suggested the precise diagnostic significance of NGS technology in EVA patients in Guizhou.
Humans
;
Sulfate Transporters
;
Vestibular Aqueduct/abnormalities*
;
Mutation
;
Membrane Transport Proteins/genetics*
;
Hearing Loss, Sensorineural/genetics*
;
Male
;
Female
;
Child
;
Adolescent
;
Child, Preschool
;
Adult
;
Young Adult
;
Phenotype
;
High-Throughput Nucleotide Sequencing
5.Prediction of hearing change in children with enlarged vestibular aqueduct with different genotypes by linear mixed-effects model.
Lin DENG ; Lihui HUANG ; Xiaohua CHENG ; Yiding YU ; Yue LI ; Shan GAO ; Yu RUAN ; Jinge XIE
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(8):717-723
Objective:To explore the hearing changes of children with different genotypes of SLC26A4 with enlarged vestibular aqueduct(EVA) using the linear mixed effect model(LMM), providing evidence for the risk prediction of progressive hearing loss. Methods:A total of 48 children with EVA diagnosed in our hospital from January 2017 to January 2024. All subjects underwent two or more auditory tests. According to the results of deafness gene screening and sequencing, the genotypes are divided into: type A: homozygous mutation of c. 919-2A>G, type B: compound heterozygous or heterozygous mutation containing c. 919-2A>G, and type C: no mutation site of c. 919-2A>G of SLC26A4 gene. LMM was used to analyze the hearing thresholds change of 500 Hz, 1 000 Hz, 2 000 Hz, 4 000 Hz and the average in children with different genotypes with age. Results:A total of 92 ears, 314 audiograms of 48 children were included, the median number of audiograms was 3, the median age of initial diagnosis was 4 months, and the median follow-up time was 13 months. According to LMM, the standard deviation of random effects between patients and ears was large. There was no significant difference in hearing thresholds of different frequencies and the average in genotype A, genotype B, and genotype C, indicating that genotype had no effect on hearing threshold. There is an interaction between age and genotype. Taking genotype C as the reference, children with genotype B had the lowest increase in 500 Hz, 1000 Hz, and the average hearing threshold, followed by type A. Conclusion:EVA children exhibit substantial inter-individual/ear hearing threshold variability. Low-frequency thresholds progress slower than high frequencies. Genotype modulates progression rates, with wild-type(Type C) demonstrating fastest deterioration, supporting personalized auditory monitoring strategies.
Humans
;
Vestibular Aqueduct/abnormalities*
;
Genotype
;
Sulfate Transporters
;
Mutation
;
Auditory Threshold
;
Hearing Loss, Sensorineural/genetics*
;
Male
;
Female
;
Child
;
Child, Preschool
;
Hearing Loss/genetics*
;
Hearing Tests
;
Linear Models
;
Infant
6.Genetic counseling for hearing loss today.
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):1-7
Genetic counseling for hearing loss today originated from decoding the genetic code of hereditary hearing loss, which serves as an effective strategy for preventing hearing loss and constitutes a crucial component of the diagnostic and therapeutic framework. This paper described the main principles and contents of genetic counseling for hearing loss, the key points of counseling across various genetic models and its application in tertiary prevention strategies targeting hearing impairment. The prospects of an AI-assisted genetic counseling decision system and the envisions of genetic counseling in preventing hereditary hearing loss were introduced. Genetic counseling for hearing loss today embodies the hallmark of a new era, which is inseparable from the advancements in science and technology, and will undoubtedly contribute to precise gene intervention!
Humans
;
Genetic Counseling
;
Deafness/genetics*
;
Hearing Loss/diagnosis*
;
Hearing Loss, Sensorineural/genetics*
7.Genetic characteristic analysis of slight-to-moderate sensorineural hearing loss in children.
Rui ZHOU ; Jing GUAN ; Qiuju WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):18-22
Objective:To analyze genetic factors and phenotype characteristics in pediatric population with slight-to-moderate sensorineural hearing loss. Methods:Children with slight-to-moderate sensorineural hearing loss of and their parents, enrolled from the Chinese Deafness Genome Project, were studied. Hearing levels were assessed using pure tone audiometry, behavioral audiometry, auditory steady state response(ASSR), auditory brainstem response(ABR) thresholds, and deformed partial otoacoustic emission(DPOAE). Classification of hearing loss is according to the 2022 American College of Medical Genetics and Genomics(ACMG) Clinical Practice Guidelines for Hearing Loss. Whole exome sequencing(WES) and deafness gene Panel testing were performed on peripheral venous blood from probands and validations were performed on their parents by Sanger sequencing. Results:All 134 patients had childhood onset, exhibiting bilateral symmetrical slight-to-moderate sensorineural hearing loss, as indicated by audiological examinations. Of the 134 patients, 29(21.6%) had a family history of hearing loss, and the rest were sporadic patients. Genetic causative genes were identified in 66(49.3%) patients. A total of 11 causative genes were detected, of which GJB2 was causative in 34 cases(51.5%), STRC in 10 cases(15.1%), MPZL2 gene in six cases(9.1%), and USH2A in five cases(7.6%).The most common gene detected in slight-to-moderate hearing loss was GJB2, with c. 109G>A homozygous mutation found in 16 cases(47.1%) and c. 109G>A compound heterozygous mutation in 9 cases(26.5%). Conclusion:This study provides a crucial genetic theory reference for early screening and detection of mild to moderate hearing loss in children, highlighting the predominance of recessive inheritance and the significance of gene like GJB2, STRC, MPZL2, USH2A.
Humans
;
Child
;
Connexins/genetics*
;
Connexin 26/genetics*
;
Hearing Loss, Sensorineural/diagnosis*
;
Mutation
;
Usher Syndromes
;
Hearing Loss, Bilateral
;
Audiometry, Pure-Tone
;
Intercellular Signaling Peptides and Proteins
8.Splicing mutations of GSDME cause late-onset non-syndromic hearing loss.
Danyang LI ; Hongyang WANG ; Qiuju WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):30-37
Objective:To dentify the genetic and audiological characteristics of families affected by late-onset hearing loss due to GSDMEgene mutations, aiming to explore clinical characteristics and pathogenic mechanisms for providing genetic counseling and intervention guidance. Methods:Six families with late-onset hearing loss from the Chinese Deafness Genome Project were included. Audiological tests, including pure-tone audiometry, acoustic immittance, speech recognition scores, auditory brainstem response, and distortion product otoacoustic emission, were applied to evaluate the hearing levels of patients. Combining with medical history and physical examination to analyze the phenotypic differences between the probands and their family members. Next-generation sequencing was used to identify pathogenic genes in probands, and validations were performed on their relatives by Sanger sequencing. Pathogenicity analysis was performed according to the American College of Medical Genetics and Genomics Guidelines. Meanwhile, the pathogenic mechanisms of GSDME-related hearing loss were explored combining with domestic and international research progress. Results:Among the six families with late-onset hearing loss, a total of 30 individuals performed hearing loss. The onset of hearing loss in these families ranged from 10 to 50 years(mean age: 27.88±9.74 years). In the study, four splicing mutations of the GSDME were identified, including two novel variants: c. 991-7C>G and c. 1183+1G>T. Significantly, the c. 991-7C>G was a de novo variant. The others were previously reported variants: c. 991-1G>C and c. 991-15_991-13del, the latter was identified in three families. Genotype-phenotype correlation analysis revealed that probands with the c. 991-7C>G and c. 1183+1G>T performed a predominantly high-frequency hearing loss. The three families carrying the same mutation exhibited varying degrees of hearing loss, with an annual rate of hearing deterioration exceeding 0.94 dB HL/year. Furthermore, follow-up of interventions showed that four of six probands received intervention(66.67%), but the results of intervention varied. Conclusion:The study analyzed six families with late-onset non-syndromic hearing loss linked to GSDME mutations, identifying four splicing variants. Notably, c. 991-7C>G is the first reported de novo variant of GSDME globally. Audiological analysis revealed that the age of onset generally exceeded 10 years,with variable effectiveness of interventions.
Humans
;
Adolescent
;
Young Adult
;
Adult
;
Child
;
Hearing Loss, Sensorineural/diagnosis*
;
Deafness/genetics*
;
Mutation
;
Hearing Loss/genetics*
;
Pedigree
9.Genetic and phenotypic analysis of MYO15A rare variants associated with autosomal recessive hearing loss.
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):38-43
Objective:To analyze the phenotype and genotype characteristics of autosomal recessive hearing loss caused by MYO15A gene variants, and to provide genetic diagnosis and genetic counseling for patients and their families. Methods:Identification of MYO15A gene variants by next generation sequencing in two sporadic cases of hearing loss at Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine. The sequence variants were verified by Sanger sequencing.The pathogenicity of these variants was determined according to the American College of Medical Genetics and Genomics(ACMG) variant classification guidelines, in conjuction with clinical data. Results:The probands of the two families have bilateral,severe or complete hearing loss.Four variants of MYO15A were identified, including one pathogenic variant that has been reported, two likely pathogenic variants,and one splicing variant of uncertain significance. Patient I carries c. 3524dupA(p. Ser1176Valfs*14), a reported pathogenic variant, and a splicing variant c. 10082+3G>A of uncertain significance according to the ACMG guidelines. Patient I was treated with bilateral hearing aids with satisfactory effect, demonstrated average hearing thresholds of 37.5 dB in the right ear and 33.75 dB in the left ear. Patient Ⅱ carries c. 7441_7442del(p. Leu2481Glufs*86) and c. 10250_10252del(p. Ser3417del),a pair of as likely pathogenic variants according to the ACMG guidelines. Patient Ⅱ, who underwent right cochlear implantation eight years ago, achieved scores of 9 on the Categorical Auditory Performance-Ⅱ(CAP-Ⅱ) and 5 on the Speech Intelligibility Rating(SIR). Conclusion:This study's discovery of the rare c. 7441_7442del variant and the splicing variant c. 10082+3G>A in the MYO15A gene is closely associated with autosomal recessive hearing loss, expanding the MYO15A variant spectrum. Additionally, the pathogenicity assessment of the splicing variant facilitates classification of splicing variations.
Humans
;
Pedigree
;
China
;
Deafness/genetics*
;
Hearing Loss/genetics*
;
Phenotype
;
Hearing Loss, Sensorineural/genetics*
;
Mutation
;
Myosins/genetics*
10.Research progress on hereditary endocrine and metabolic diseases associated with sensorineural hearing loss.
Fang CHEN ; Qinying ZHANG ; Qiujing ZHANG ; Qiuju WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):63-69
Hereditary endocrine and metabolic diseases , caused by genetic factors, exhibit complex and diverse symptoms, including the possibility of concurrent sensorineural deafness. Currently, there is a limited clinical understanding of hereditary endocrine and metabolic diseases that manifest with deafness, the pathogenesis remains unclear,and there is a lack of effective diagnostic and treatment methods. This article summarizes the research progress of hereditary endocrine and metabolic diseases complicated with deafness from the pathogenesis, clinical phenotype, diagnosis and treatment. Understanding the current research progress and integrating genetic analysis into clinical practice are crucial for accurate diagnosis and treatment, evaluating clinical efficacy, and providing effective genetic counseling for these diseases.
Humans
;
Deafness/genetics*
;
Hearing Loss, Sensorineural/diagnosis*
;
Phenotype
;
Metabolic Diseases/genetics*
;
Genetic Counseling

Result Analysis
Print
Save
E-mail