1.Integrated evidence chain-based effectiveness evaluation of traditional Chinese medicines (Eff-iEC): A demonstration study.
Ye LUO ; Xu ZHAO ; Ruilin WANG ; Xiaoyan ZHAN ; Tianyi ZHANG ; Tingting HE ; Jing JING ; Jianyu LI ; Fengyi LI ; Ping ZHANG ; Junling CAO ; Jinfa TANG ; Zhijie MA ; Tingming SHEN ; Shuanglin QIN ; Ming YANG ; Jun ZHAO ; Zhaofang BAI ; Jiabo WANG ; Aiguo DAI ; Xiangmei CHEN ; Xiaohe XIAO
Acta Pharmaceutica Sinica B 2025;15(2):909-918
Addressing the enduring challenge of evaluating traditional Chinese medicines (TCMs), the integrated evidence chain-based effectiveness evaluation of TCMs (Eff-iEC) has emerged. This paper explored its capacity through a demonstration study that evaluated the effectiveness evidence of six commonly used anti-hepatic fibrosis Chinese patent medicines (CPMs), including Biejiajian Pill (BP), Dahuang Zhechong Pill (DZP), Biejia Ruangan Compound (BRC), Fuzheng Huayu Capsule (FHC), Anluo Huaxian Pill (AHP), and Heluo Shugan Capsule (HSC), using both Eff-iEC and the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) system. The recognition of these CPMs within the TCM academic community was also assessed through their inclusion in relevant medical documents. Results showed that the evidence of BRC and FHC received higher assessments in both Eff-iEC and GRADE system, while the assessments for others varied. Analysis of community recognition revealed that Eff-iEC more accurately reflects the clinical value of these CPMs, exhibiting superior evaluative capabilities. By breaking through the conventional pattern of TCMs effectiveness evaluation, Eff-iEC offers a novel epistemology that better aligns with the clinical realities and reasoning of TCMs, providing a coherent methodology for clinical decision-making, new drug evaluations, and health policy formulation.
2.International clinical practice guideline on the use of traditional Chinese medicine for functional dyspepsia (2025).
Sheng-Sheng ZHANG ; Lu-Qing ZHAO ; Xiao-Hua HOU ; Zhao-Xiang BIAN ; Jian-Hua ZHENG ; Hai-He TIAN ; Guan-Hu YANG ; Won-Sook HONG ; Yu-Ying HE ; Li LIU ; Hong SHEN ; Yan-Ping LI ; Sheng XIE ; Jin SHU ; Bin-Fang ZENG ; Jun-Xiang LI ; Zhen LIU ; Zheng-Hua XIAO ; Jing-Dong XIAO ; Pei-Yong ZHENG ; Shao-Gang HUANG ; Sheng-Liang CHEN ; Gui-Jun FEI
Journal of Integrative Medicine 2025;23(5):502-518
Functional dyspepsia (FD), characterized by persistent or recurrent dyspeptic symptoms without identifiable organic, systemic or metabolic causes, is an increasingly recognized global health issue. The objective of this guideline is to equip clinicians and nursing professionals with evidence-based strategies for the management and treatment of adult patients with FD using traditional Chinese medicine (TCM). The Guideline Development Group consulted existing TCM consensus documents on FD and convened a panel of 35 clinicians to generate initial clinical queries. To address these queries, a systematic literature search was conducted across PubMed, EMBASE, the Cochrane Library, China National Knowledge Infrastructure (CNKI), VIP Database, China Biology Medicine (SinoMed) Database, Wanfang Database, Traditional Medicine Research Data Expanded (TMRDE), and the Traditional Chinese Medical Literature Analysis and Retrieval System (TCMLARS). The evidence from the literature was critically appraised using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. The strength of the recommendations was ascertained through a consensus-building process involving TCM and allopathic medicine experts, methodologists, pharmacologists, nursing specialists, and health economists, leveraging their collective expertise and empirical knowledge. The guideline comprises a total of 43 evidence-informed recommendations that span a range of clinical aspects, including the pathogenesis according to TCM, diagnostic approaches, therapeutic interventions, efficacy assessments, and prognostic considerations. Please cite this article as: Zhang SS, Zhao LQ, Hou XH, Bian ZX, Zheng JH, Tian HH, Yang GH, Hong WS, He YY, Liu L, Shen H, Li YP, Xie S, Shu J, Zeng BF, Li JX, Liu Z, Xiao ZH, Xiao JD, Zheng PY, Huang SG, Chen SL, Fei GJ. International clinical practice guideline on the use of traditional Chinese medicine for functional dyspepsia (2025). J Integr Med. 2025; 23(5):502-518.
Dyspepsia/drug therapy*
;
Humans
;
Medicine, Chinese Traditional/methods*
;
Practice Guidelines as Topic
;
Drugs, Chinese Herbal/therapeutic use*
3.Direct Determination of 23 Kinds of Per-and Polyfluoroalkyl Substances in Crude Plant Extracts by Liquid Chromatography-Tandem Mass Spectrometry Coupled with Online Solid Phase Extraction
Nan SHEN ; Tong-Zhu HAN ; Can-Can SHENG ; Xiu-Ping HE ; Jun-Hui CHEN ; Chen-Guang LIU ; Xian-Guo LI
Chinese Journal of Analytical Chemistry 2024;52(2):286-295,后插1-后插5
A new method for simultaneous determination of 23 kinds of per-and polyfluoroalkyl substances(PFASs)(13 kinds of perfluoro carboxylic acids,4 kinds of perfluoro sulfonic acids,and 6 kinds of new substitutes)in plant leaf tissue by ultra-high performance liquid chromatography-tandem mass spectrometry(UHPLC-MS/MS)using automatic online solid phase extraction(SPE)to remove the matrix interference components in plant crude extracts was developed.The plant leaf samples were extracted twice with 1%formic acid-methanol solution,then evaporated to dry,redissolved with 70%methanol solution,and directly injected for analysis.After 23 kinds of target PFASs were purified automatically by online SPE with a WAX column,the six-way valve was switched to rinse PFASs onto an alkaline mobile phase system-compatible C18 analytical column.Then,the 23 kinds of target PFASs were separated within 16 min by gradient elution using a binary mobile phase system of methanol/water(Containing 0.4%ammonium hydroxide).Tandem mass spectrometry was performed in multiple reaction monitoring(MRM)mode for online detection of various PFASs,and quantification was carried out by internal standard method.The results of the method validation showed that satisfactory average recoveries of 23 kinds of PFASs in plant leaf samples(64.2%-125.5%),precision(relative standard deviations(RSDs)of 0.7%-12.8%),linearity(R2>0.990),and sensitivity(the detection limits(S/N=3)were in the range of 0.02-0.50 μg/kg)were achieved.Finally,this method was used to detect PFASs in the marine green tide algae(Enteromorpha prolifera)and several tree leaves,and a total of 6 kinds of PFASs were detected,in which PFBA was the main contaminant.Compared with the reported offline SPE methods,the proposed online SPE technique significantly simplified the sample pretreatment process and provided an automatic,simple,and environment-friendly method for the routine monitoring of legacy and emerging PFASs in plant tissues.
4.Study on the characteristics of lymphocyte-specfic protein-tyrosine kinase methylation in the peripheral blood circulation of patients with rheumatoid arthritis
Lingxia XU ; Cen CHANG ; Ping JIANG ; Kai WEI ; Jia′nan ZHAO ; Yixin ZHENG ; Yu SHAN ; Yiming SHI ; Hua Ye JIN ; Yi SHEN ; Shicheng GUO ; Dongyi HE ; Jia LIU
Chinese Journal of Rheumatology 2024;28(3):155-161
Objective:To analyze the methylation characteristics of the lymphocyte-specific protein-tyrosine kinase (LCK) promoter region in the peripheral blood circulation of rheumatoid arthritis (RA) patients and its correlation with clinical indicators.Methods:Targeted methylation sequencing was used to compare the methylation levels of 7 CpG sites in the LCK promoter region in the peripheral blood of RA patients with healthy controls (HC) and osteoarthritis (OA) patients. Correlation analysis and ROC curve construction were performed with clinical information.Results:Non-parametric tests revealed that compared with HC [0.53(0.50, 0.57)] and OA patients [0.59(0.54, 0.62), H=47.17, P<0.001], RA patients [0.63(0.59, 0.68)] exhibited an overall increase in methylation levels. Simultaneously, when compared with the HC group [0.38(0.35, 0.41), 0.59(0.55, 0.63), 0.60(0.55, 0.64), 0.59(0.55, 0.63), 0.58(0.53, 0.62), 0.45(0.43, 0.49), 0.57(0.54, 0.61)], the RA group [0.46(0.42, 0.49), 0.70(0.65, 0.75), 0.70(0.66, 0.76), 0.70(0.65, 0.75), 0.69(0.64, 0.74), 0.55(0.51, 0.59), 0.68(0.63, 0.73)] showed a significant elevation in methylation levels at CpG sites cg05350315_60, cg05350315_80, cg05350315_95, cg05350315_101, cg05350315_104, cg05350315_128, and cg05350315_142, with statistically significant differences ( Z=-5.63, -5.89, -5.91, -5.89, -5.98, -5.95, -5.95, all P<0.001). Compared with the OA group [0.65(0.59, 0.69), 0.65(0.60, 0.69), 0.64(0.58, 0.68), 0.50(0.45, 0.54), 0.63(0.58, 0.67)], the RA group [0.70(0.66, 0.76), 0.70(0.65, 0.75), 0.69(0.64, 0.74), 0.55(0.51, 0.59), 0.68(0.63, 0.73)] exhibited a significant increase in methylation levels at CpG sites cg05350315_95, cg05350315_101, cg05350315_104, cg05350315_128, and cg05350315_142, with statistically significant differences ( Z=-3.56, -3.52, -3.60, -3.67, -3.62; P=0.036, 0.042, 0.031, 0.030, 0.030). Furthermore, Pearson correlation coefficient analysis revealed a positive correlation between the overall methylation level in this region and C-reactive protein (CRP) ( r=0.19, P=0.004) and erythrocyte sedimentation rate ( r=0.14, P=0.035). The overall methylation level of the LCK promoter region in the CRP (low) group [0.63 (0.58, 0.68)] was higher than that in the CRP (high) group [0.65(0.61, 0.70)], with statistically significant differences ( Z=2.60, P=0.009). Finally, by constru-cting a ROC curve, the discriminatory efficacy of peripheral blood LCK promoter region methylation levels for identifying RA patients, especially seronegative RA patients, from HC and OA groups was validated, with an AUC value of 0.78 (95% CI: 0.63, 0.93). Conclusion:This study provides insights into the methylation status and methylation haplotype patterns of the LCK promoter region in the peripheral blood of RA patients. The overall methylation level in this region is positively correlated with the level of inflammation and can be used to differentiate seronegative RA patients from the HC and OA patients.
5.Disease characteristics and costs of pediatric Mycoplasma Pneumoniae pneumonia hospitalization:a retrospective study at municipal hospitals from 2019 to 2023 in Shanghai
Ying-Wen WANG ; Feng WANG ; Li-Bo WANG ; Ai-Zhen LU ; Yi WANG ; Yong-Hao GUI ; Quan LU ; Yong YIN ; Jian-Hua ZHANG ; Ying-Zi YE ; Hong XU ; Bing SHEN ; Dan-Ping GU ; Xiao-Yan DONG ; Jia-Yu WANG ; Wen HE ; Xiao-Bo ZHANG
Fudan University Journal of Medical Sciences 2024;51(4):515-521
Objective To investigate disease characteristics and hospitalization costs of children with Mycoplasma Pneumoniae pneumonia(MPP)admitted to Shanghai municipal medical hospitals from 2019 to 2023.Methods Depending on the Shanghai Municipal Hospital Pediatric Alliance,we retrospectively investigated community acquired MPP pediatric patients hospitalized in 22 municipal hospitals with pediatric qualifications(including 4 children's hospitals)in Shanghai from Jan 2019 to Dec 2023.We collected the patients'diagnosis codes,gender,age,length of hospital stay,hospitalization costs,and whether they progressed to severe Mycoplasma pneumoniae pneumonia(SMPP).Results From 2019 to 2023,a total of 29 045 hospitalized children with MPP were treated,with 6 035 cases(20.8%)identified as SMPP in the 22 hospitals.Trend analysis revealed a rising trend with years in the proportion of SMPP patients(χ2trend=365.498,P<0.001).Among the 4 children's hospitals,there were 18 710 cases with MPP,including 4 078 cases(21.8%)of SMPP.The proportion of SMPP patients also showed an increasing trend with years(χ2trend=14.548,P<0.001),and the proportion in 2023(23.0%)was higher than that in previous years with statistical significance.There were statistical differences in the seasonal distribution of MPP cases between different years,with higher proportions in summer and autumn overall.The age distribution of hospitalized MPP children varied among different years,with school-age children accounting for the majority(56.8%)in 2023.There was no difference in the distribution of severe cases between different genders,but there were differences in the proportion of severe cases among different age groups in different years,with a gradual increase in severe cases among children aged 1 to 3 years(χ2trend=191.567,P<0.001).The average length of hospital stay for MPP during the epidemic was higher than that during non-epidemic periods,and there were statistically significant differences in the average length of hospital stay between different years(P<0.001).The individual hospitalization costs during the epidemic were higher than in other years,and there were statistically significant differences in individual hospitalization costs between different years(P<0.001).The total hospitalization costs were still higher in 2019 and 2023.The individual hospitalization costs for SMPP were higher than for non-SMPP cases.Conclusion MPP outbreaks occurred in Shanghai in 2019 and 2023,with the higher proportions in summer and autumn overall.Compared to previous years,the number of hospitalized MPP children in Shanghai was higher in 2023,with a higher proportion of SMPP cases,especially among children under 3 years old.The individual per capita hospitalization expenses for SMPP cases were higher than for non-SMPP cases.
6.Mechanism of Morinda officinalis iridoid glycosides alleviates bone deterioration in type II collagen-induced arthritic rats through down-regulating GSK-3β to inhibit JAK2/STAT3 and NF-κ B signaling pathway
Yi SHEN ; Yi-qi SUN ; He-ming LI ; Xin-yuan YE ; Jin-man DU ; Rong-hua BAO ; Quan-long ZHANG ; Lu-ping QIN ; Qiao-yan ZHANG
Acta Pharmaceutica Sinica 2024;59(10):2763-2772
This study aimed to investigate the therapeutic effects of
7.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
8.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
9.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
10.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.

Result Analysis
Print
Save
E-mail