1.Research progress on the effect of miRNA-mediated PPARγ-related signaling pathways on lipid metabolism in steroid-induced osteonecrosis of femoral head.
Hai-Yuan GAO ; Xiao-Ping WANG ; Ming-Wang ZHOU ; Xing YANG ; Bang-Jing HE
Acta Physiologica Sinica 2025;77(3):493-503
Steroid-induced osteonecrosis of femoral head (SONFH) is a disease characterized by femoral head collapse and local pain caused by excessive use of glucocorticoids. Peroxisome proliferator-activated receptor-γ (PPARγ) is mainly expressed in adipose tissue. Wnt/β-catenin, AMPK and other related signaling pathways play an important role in regulating adipocyte differentiation, fatty acid uptake and storage. Bone marrow mesenchymal cells (BMSCs) have the ability to differentiate into adipocytes or osteoblasts, and the use of hormones upregulates PPARγ expression, resulting in BMSCs biased towards adipogenic differentiation. The increase of adipocytes affects the blood supply and metabolism of the femoral head, and the decrease of osteoblasts leads to the loss of trabecular bone, which eventually leads to partial or total ischemic necrosis and collapse of the femoral head. MicroRNAs (miRNAs) are a class of short non-coding RNAs that regulate gene expression by inhibiting the transcription or translation of target genes, thereby affecting cell function and disease progression. Studies have shown that miRNAs affect the progression of SONFH by regulating PPARγ lipid metabolism-related signaling pathways. Therefore, it may be an accurate and feasible SONFH treatment strategy to regulate adipogenic-osteoblast differentiation in BMSCs by targeted intervention of miRNA differential expression to improve lipid metabolism. In this paper, the miRNA-mediated PPARγ-related signaling pathways were classified and summarized to clarify their effects on lipid metabolism in SONFH, providing a theoretical reference for miRNA targeted therapy of SONFH, and then providing scientific evidence for SONFH precision medicine.
MicroRNAs/physiology*
;
PPAR gamma/metabolism*
;
Femur Head Necrosis/metabolism*
;
Humans
;
Signal Transduction/physiology*
;
Lipid Metabolism/physiology*
;
Animals
;
Cell Differentiation
;
Mesenchymal Stem Cells/cytology*
;
Glucocorticoids/adverse effects*
2.Identification of blood-entering components of Anshen Dropping Pills based on UPLC-Q-TOF-MS/MS combined with network pharmacology and evaluation of their anti-insomnia effects and mechanisms.
Xia-Xia REN ; Jin-Na YANG ; Xue-Jun LUO ; Hui-Ping LI ; Miao QIAO ; Wen-Jia WANG ; Yi HE ; Shui-Ping ZHOU ; Yun-Hui HU ; Rui-Ming LI
China Journal of Chinese Materia Medica 2025;50(7):1928-1937
This study identified blood-entering components of Anshen Dropping Pills and explored their anti-insomnia effects and mechanisms. The main blood-entering components of Anshen Dropping Pills were detected and identified by UPLC-Q-TOF-MS/MS. The rationality of the formula was assessed by using enrichment analysis based on the relationship between drugs and symptoms, and core targets of its active components were selected as the the potential anti-insomnia targets of Anshen Dropping Pills through network pharmacology analysis. Furthermore, protein-protein interaction(PPI) network, Gene Ontology(GO) enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis were performed on the core targets. An active component-core target network for Anshen Dropping Pills was constructed. Finally, the effects of low-, medium-, and high-dose groups of Anshen Dropping Pills on sleep episodes, sleep duration, and sleep latency in mice were measured by supraliminal and subliminal pentobarbital sodium experiments. Moreover, total scores of the Pittsburgh sleep quality index(PSQI) scale was used to evaluate the changes before and after the treatment with Anshen Dropping Pills in a clinical study. The enrichment analysis based on the relationship between drugs and symptoms verified the rationality of the Anshen Dropping Pills formula, and nine blood-entering components of Anshen Dropping Pills were identified by UPLC-Q-TOF-MS/MS. The network proximity revealed a significant correlation between eight components and insomnia, including magnoflorine, liquiritin, spinosin, quercitrin, jujuboside A, ginsenoside Rb_3, glycyrrhizic acid, and glycyrrhetinic acid. Network pharmacology analysis indicated that the major anti-insomnia pathways of Anshen Dropping Pills involved substance and energy metabolism, neuroprotection, immune system regulation, and endocrine regulation. Seven core genes related to insomnia were identified: APOE, ALB, BDNF, PPARG, INS, TP53, and TNF. In summary, Anshen Dropping Pills could increase sleep episodes, prolong sleep duration, and reduce sleep latency in mice. Clinical study results demonstrated that Anshen Dropping Pills could decrease total scores of PSQI scale. This study reveals the pharmacodynamic basis and potential multi-component, multi-target, and multi-pathway effects of Anshen Dropping Pills, suggesting that its anti-insomnia mechanisms may be associated with the regulation of insomnia-related signaling pathways. These findings offer a theoretical foundation for the clinical application of Anshen Dropping Pills.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Tandem Mass Spectrometry/methods*
;
Sleep Initiation and Maintenance Disorders/metabolism*
;
Mice
;
Network Pharmacology
;
Male
;
Chromatography, High Pressure Liquid
;
Humans
;
Protein Interaction Maps/drug effects*
;
Sleep/drug effects*
;
Female
;
Adult
3.Mechanism of vanillic acid against cardiac fibrosis induced by isoproterenol in mice based on Drp1/HK1/NLRP3 and mitochondrial apoptosis signaling pathways.
Hai-Bo HE ; Mian WU ; Jie XU ; Qian-Qian XU ; Fang-Zhu WAN ; Hua-Qiao ZHONG ; Ji-Hong ZHANG ; Gang ZHOU ; Hui-Lin QIN ; Hao-Ran LI ; Hai-Ming TANG
China Journal of Chinese Materia Medica 2025;50(8):2193-2208
This study investigated the effects and underlying mechanisms of vanillic acid(VA) against cardiac fibrosis(CF) induced by isoproterenol(ISO) in mice. Male C57BL/6J mice were randomly divided into control group, VA group(100 mg·kg~(-1), ig), ISO group(10 mg·kg~(-1), sc), ISO + VA group(10 mg·kg~(-1), sc + 100 mg·kg~(-1), ig), ISO + dynamin-related protein 1(Drp1) inhibitor(Mdivi-1) group(10 mg·kg~(-1), sc + 50 mg·kg~(-1), ip), and ISO + VA + Mdivi-1 group(10 mg·kg~(-1), sc + 100 mg·kg~(-1), ig + 50 mg·kg~(-1), ip). The treatment groups received the corresponding medications once daily for 14 consecutive days. On the day after the last administration, cardiac functions were evaluated, and serum and cardiac tissue samples were collected. These samples were analyzed for serum aspartate aminotransferase(AST), lactate dehydrogenase(LDH), creatine kinase-MB(CK-MB), cardiac troponin I(cTnI), reactive oxygen species(ROS), interleukin(IL)-1β, IL-4, IL-6, IL-10, IL-18, and tumor necrosis factor-α(TNF-α) levels, as well as cardiac tissue catalase(CAT), glutathione(GSH), malondialdehyde(MDA), myeloperoxidase(MPO), superoxide dismutase(SOD), total antioxidant capacity(T-AOC) activities, and cytochrome C levels in mitochondria and cytoplasm. Hematoxylin-eosin, Masson, uranium acetate and lead citrate staining were used to observe morphological and mitochondrial ultrastructural changes in the cardiac tissues, and myocardial injury area and collagen volume fraction were calculated. Flow cytometry was applied to detect the relative content and M1/M2 polarization of cardiac macrophages. The mRNA expression levels of macrophage polarization markers [CD86, CD206, arginase 1(Arg-1), inducible nitric oxide synthase(iNOS)], CF markers [type Ⅰ collagen(Coll Ⅰ), Coll Ⅲ, α-smooth muscle actin(α-SMA)], and cytokines(IL-1β, IL-4, IL-6, IL-10, IL-18, TNF-α) in cardiac tissues were determined by quantitative real-time PCR. Western blot was used to detect the protein expression levels of Coll Ⅰ, Coll Ⅲ, α-SMA, Drp1, p-Drp1, voltage-dependent anion channel(VDAC), hexokinase 1(HK1), NOD-like receptor protein 3(NLRP3), apoptosis-associated speck-like protein(ASC), caspase-1, cleaved-caspase-1, gasdermin D(GSDMD), cleaved N-terminal gasdermin D(GSDMD-N), IL-1β, IL-18, B-cell lymphoma-2(Bcl-2), B-cell lymphoma-xl(Bcl-xl), Bcl-2-associated death promoter(Bad), Bcl-2-associated X protein(Bax), apoptotic protease activating factor-1(Apaf-1), pro-caspase-3, cleaved-caspase-3, pro-caspase-9, cleaved-caspase-9, poly(ADP-ribose) polymerase-1(PARP-1), and cleaved-PARP-1 in cardiac tissues. The results showed that VA significantly improved cardiac function in mice with CF, reduced myocardial injury area and cardiac index, and decreased serum levels of AST, CK-MB, cTnI, LDH, ROS, IL-1β, IL-6, IL-18, and TNF-α. VA also lowered MDA and MPO levels, mRNA expressions of IL-1β, IL-6, IL-18, and TNF-α, and mRNA and protein expressions of Coll Ⅰ, Coll Ⅲ, and α-SMA in cardiac tissues, and increased serum levels of IL-4 and IL-10, cardiac tissue levels of CAT, GSH, SOD, and T-AOC, and mRNA expressions of IL-4 and IL-10. Additionally, VA ameliorated cardiac pathological damage, inhibited myocardial cell apoptosis, inflammatory infiltration, and collagen fiber deposition, reduced collagen volume fraction, and alleviated mitochondrial damage. VA decreased the ratio of F4/80~+CD86~+ M1 cells and the mRNA expressions of CD86 and iNOS in cardiac tissue, and increased the ratio of F4/80~+CD206~+ M2 cells and the mRNA expressions of CD206 and Arg-1. VA also reduced protein expressions of p-Drp1, VDAC, NLRP3, ASC, caspase-1, cleaved-caspase-1, GSDMD, GSDMD-N, IL-1β, IL-18, Bad, Bax, Apaf-1, cleaved-caspase-3, cleaved-caspase-9, cleaved-PARP-1, and cytoplasmic cytochrome C, and increased the expressions of HK1, Bcl-2, Bcl-xl, pro-caspase-3, pro-caspase-9 proteins, as well as the Bcl-2/Bax and Bcl-xl/Bad ratios and mitochondrial cytochrome C content. These results indicate that VA has a significant ameliorative effect on ISO-induced CF in mice, alleviates ISO-induced oxidative damage and inflammatory response, and its mechanism may be closely related to the inhibition of Drp1/HK1/NLRP3 and mitochondrial apoptosis signaling pathways, suppression of myocardial cell inflammatory infiltration and collagen fiber deposition, reduction of collagen volume fraction and CollⅠ, Coll Ⅲ, and α-SMA expressions, thus mitigating CF.
Animals
;
Isoproterenol/adverse effects*
;
Male
;
Mice
;
Signal Transduction/drug effects*
;
Vanillic Acid/administration & dosage*
;
Dynamins/genetics*
;
Mice, Inbred C57BL
;
Fibrosis/genetics*
;
Apoptosis/drug effects*
;
Mitochondria/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Myocardium/metabolism*
;
Humans
4.Expert consensus on evaluation index system construction for new traditional Chinese medicine(TCM) from TCM clinical practice in medical institutions.
Li LIU ; Lei ZHANG ; Wei-An YUAN ; Zhong-Qi YANG ; Jun-Hua ZHANG ; Bao-He WANG ; Si-Yuan HU ; Zu-Guang YE ; Ling HAN ; Yue-Hua ZHOU ; Zi-Feng YANG ; Rui GAO ; Ming YANG ; Ting WANG ; Jie-Lai XIA ; Shi-Shan YU ; Xiao-Hui FAN ; Hua HUA ; Jia HE ; Yin LU ; Zhong WANG ; Jin-Hui DOU ; Geng LI ; Yu DONG ; Hao YU ; Li-Ping QU ; Jian-Yuan TANG
China Journal of Chinese Materia Medica 2025;50(12):3474-3482
Medical institutions, with their clinical practice foundation and abundant human use experience data, have become important carriers for the inheritance and innovation of traditional Chinese medicine(TCM) and the "cradles" of the preparation of new TCM. To effectively promote the transformation of new TCM originating from the TCM clinical practice in medical institutions and establish an effective evaluation index system for the transformation of new TCM conforming to the characteristics of TCM, consensus experts adopted the literature research, questionnaire survey, Delphi method, etc. By focusing on the policy and technical evaluation of new TCM originating from the TCM clinical practice in medical institutions, a comprehensive evaluation from the dimensions of drug safety, efficacy, feasibility, and characteristic advantages was conducted, thus forming a comprehensive evaluation system with four primary indicators and 37 secondary indicators. The expert consensus reached aims to encourage medical institutions at all levels to continuously improve the high-quality research and development and transformation of new TCM originating from the TCM clinical practice in medical institutions and targeted at clinical needs, so as to provide a decision-making basis for the preparation, selection, cultivation, and transformation of new TCM for medical institutions, improve the development efficiency of new TCM, and precisely respond to the public medication needs.
Medicine, Chinese Traditional/standards*
;
Humans
;
Consensus
;
Drugs, Chinese Herbal/therapeutic use*
;
Surveys and Questionnaires
5.Quality changes of volatile oil and chlorogenic acid compounds during extraction process of Artemisiae Argyi Folium: process analysis based on chemical composition, physicochemical properties, and biological activity.
Dan-Dan YANG ; Hao-Zhou HUANG ; Xin-Ming CHEN ; Lin HUANG ; Ya-Nan HE ; Zhen-Feng WU ; Xiao-Ming BAO ; Ding-Kun ZHANG ; Ming YANG
China Journal of Chinese Materia Medica 2025;50(11):3001-3012
To explore the variation laws of volatile oil during the extraction process of Artemisiae Argyi Folium and its impact on the quality of the medicinal solution, as well as to achieve precise control of the extraction process, this study employed headspace solid phase microextraction gas chromatography-mass spectrometry(HS-SPME-GC-MS) in combination with multiple light scattering techniques to conduct a comprehensive analysis, identification, and characterization of the changes in volatile components and the physical properties of the medicinal solution during the extraction process. A total of 82 volatile compounds were identified using the HS-SPME-GC-MS technique, including 21 alcohols, 15 alkenes, 14 ketones, 9 acids, 6 aldehydes, 5 phenols, 3 esters, and 9 other types of compounds. At different extraction time points(15, 30, 45, and 60 min), 71, 72, 64, and 44 compounds were identified in the medicinal solution, respectively. It was observed that the content of volatile components gradually decreased with the extension of extraction time. Through multivariate statistical analysis, four compounds with significant differences during different extraction time intervals were identified, namely 1,8-cineole, terpinen-4-ol, 3-octanone, and camphor. RESULTS:: from multiple light scattering techniques indicated that at 15 minutes of extraction, the transmittance of the medicinal solution was the lowest(25%), the particle size was the largest(0.325-0.350 nm), and the stability index(turbiscan stability index, TSI) was the highest(0-2.5). With the extension of extraction time, the light transmittance of the medicinal solution improved, stability was enhanced, and the particle size decreased. These laws of physicochemical property changes provide important basis for the control of Artemisiae Argyi Folium extraction process. In addition, the changes in the bioactivity of Artemisiae Argyi Folium extracts during the extraction process were investigated through mouse writhing tests and antimicrobial assays. The results indicated that the analgesic and antimicrobial effects of the medicinal solution were strongest at the 15-minute extracting point. In summary, the findings of this study demonstrate that the content of volatile oil in Artemisiae Argyi Folium extracts gradually decreases with the extension of extraction time, and the variation in volatile oil content directly influences the physicochemical properties and pharmacological efficacy of the medicinal solution. This discovery provides important scientific reference for the optimization of Artemisiae Argyi Folium extraction processes and the development and application of process analytical technologies.
Oils, Volatile/pharmacology*
;
Artemisia/chemistry*
;
Gas Chromatography-Mass Spectrometry
;
Drugs, Chinese Herbal/pharmacology*
;
Chlorogenic Acid/pharmacology*
;
Solid Phase Microextraction
;
Quality Control
6.Performance assessment of computed tomographic angiography fractional flow reserve using deep learning: SMART trial summary.
Wei ZHANG ; You-Bing YIN ; Zhi-Qiang WANG ; Ying-Xin ZHAO ; Dong-Mei SHI ; Yong-He GUO ; Zhi-Ming ZHOU ; Zhi-Jian WANG ; Shi-Wei YANG ; De-An JIA ; Li-Xia YANG ; Yu-Jie ZHOU
Journal of Geriatric Cardiology 2025;22(9):793-801
BACKGROUND:
Non-invasive computed tomography angiography (CTA)-based fractional flow reserve (CT-FFR) could become a gatekeeper to invasive coronary angiography. Deep learning (DL)-based CT-FFR has shown promise when compared to invasive FFR. To evaluate the performance of a DL-based CT-FFR technique, DeepVessel FFR (DVFFR).
METHODS:
This retrospective study was designed for iScheMia Assessment based on a Retrospective, single-center Trial of CT-FFR (SMART). Patients suspected of stable coronary artery disease (CAD) and undergoing both CTA and invasive FFR examinations were consecutively selected from the Beijing Anzhen Hospital between January 1, 2016 to December 30, 2018. FFR obtained during invasive coronary angiography was used as the reference standard. DVFFR was calculated blindly using a DL-based CT-FFR approach that utilized the complete tree structure of the coronary arteries.
RESULTS:
Three hundred and thirty nine patients (60.5 ±10.0 years and 209 men) and 414 vessels with direct invasive FFR were included in the analysis. At per-vessel level, sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value (NPV) of DVFFR were 94.7%, 88.6%, 90.8%, 82.7%, and 96.7%, respectively. The area under the receiver operating characteristics curve (AUC) was 0.95 for DVFFR and 0.56 for CTA-based assessment with a significant difference (P < 0.0001). At patient level, sensitivity, specificity, accuracy, PPV and NPV of DVFFR were 93.8%, 88.0%, 90.3%, 83.0%, and 95.8%, respectively. The computation for DVFFR was fast with the average time of 22.5 ± 1.9 s.
CONCLUSIONS
The results demonstrate that DVFFR was able to evaluate lesion hemodynamic significance accurately and effectively with improved diagnostic performance over CTA alone. Coronary artery disease (CAD) is a critical disease in which coronary artery luminal narrowing may result in myocardial ischemia. Early and effective assessment of myocardial ischemia is essential for optimal treatment planning so as to improve the quality of life and reduce medical costs.
7.Shexiang Tongxin Dropping Pill Improves Stable Angina Patients with Phlegm-Heat and Blood-Stasis Syndrome: A Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial.
Ying-Qiang ZHAO ; Yong-Fa XING ; Ke-Yong ZOU ; Wei-Dong JIANG ; Ting-Hai DU ; Bo CHEN ; Bao-Ping YANG ; Bai-Ming QU ; Li-Yue WANG ; Gui-Hong GONG ; Yan-Ling SUN ; Li-Qi WANG ; Gao-Feng ZHOU ; Yu-Gang DONG ; Min CHEN ; Xue-Juan ZHANG ; Tian-Lun YANG ; Min-Zhou ZHANG ; Ming-Jun ZHAO ; Yue DENG ; Chang-Jiang XIAO ; Lin WANG ; Bao-He WANG
Chinese journal of integrative medicine 2025;31(8):685-693
OBJECTIVE:
To evaluate the efficacy and safety of Shexiang Tongxin Dropping Pill (STDP) in treating stable angina patients with phlegm-heat and blood-stasis syndrome by exercise duration and metabolic equivalents.
METHODS:
This multicenter, randomized, double-blind, placebo-controlled clinical trial enrolled stable angina patients with phlegm-heat and blood-stasis syndrome from 22 hospitals. They were randomized 1:1 to STDP (35 mg/pill, 6 pills per day) or placebo for 56 days. The primary outcome was the exercise duration and metabolic equivalents (METs) assessed by the standard Bruce exercise treadmill test after 56 days of treatment. The secondary outcomes included the total angina symptom score, Chinese medicine (CM) symptom scores, Seattle Angina Questionnaire (SAQ) scores, changes in ST-T on electrocardiogram and adverse events (AEs).
RESULTS:
This trial enrolled 309 patients, including 155 and 154 in the STDP and placebo groups, respectively. STDP significantly prolonged exercise duration with an increase of 51.0 s, compared to a decrease of 12.0 s with placebo (change rate: -11.1% vs. 3.2%, P<0.01). The increase in METs was significantly greater in the STDP group than in the placebo group (change: -0.4 vs. 0.0, change rate: -5.0% vs. 0.0%, P<0.01). The improvement of total angina symptom scores (25.0% vs. 0.0%), CM symptom scores (38.7% vs. 11.8%), reduction of nitroglycerin consumption (100.0% vs. 11.3%), and all domains of SAQ, were significantly greater with STDP than placebo (all P<0.01). The changes in Q-T intervals at 28 and 56 days from baseline were similar between the two groups (both P>0.05). Twenty-five participants (16.3%) with STDP and 16 (10.5%) with placebo experienced AEs (P=0.131), with no serious AEs observed.
CONCLUSION
STDP could improve exercise tolerance in patients with stable angina and phlegm-heat and blood stasis syndrome, with a favorable safety profile. (Registration No. ChiCTR-IPR-15006020).
Humans
;
Double-Blind Method
;
Drugs, Chinese Herbal/adverse effects*
;
Male
;
Female
;
Middle Aged
;
Angina, Stable/physiopathology*
;
Aged
;
Syndrome
;
Treatment Outcome
;
Placebos
;
Tablets
8.Next-generation antifungal drugs: Mechanisms, efficacy, and clinical prospects.
Xueni LU ; Jianlin ZHOU ; Yi MING ; Yuan WANG ; Ruirui HE ; Yangyang LI ; Lingyun FENG ; Bo ZENG ; Yanyun DU ; Chenhui WANG
Acta Pharmaceutica Sinica B 2025;15(8):3852-3887
Invasive fungal infections (IFIs) have become prominent global health threats, escalating the burden on public health systems. The increasing occurrence of invasive fungal infections is due primarily to the extensive application of chemotherapy, immunosuppressive therapies, and broad-spectrum antifungal agents. At present, therapeutic practices utilize multiple categories of antifungal agents, such as azoles, polyenes, echinocandins, and pyrimidine analogs. Nevertheless, the clinical effectiveness of these treatments is progressively weakened by the emergence of drug resistance, thereby substantially restricting their therapeutic utility. Consequently, there is an imperative need to expedite the discovery of novel antifungal agents. This review seeks to present an exhaustive synthesis of novel antifungal drugs and candidate agents that are either under current clinical investigation or anticipated to progress into clinical evaluation. These emerging compounds exhibit unique benefits concerning their modes of action, antimicrobial spectra, and pharmacokinetic characteristics, potentially leading to improved therapeutic outcomes relative to conventional antifungal regimens. It is anticipated that these novel therapeutic agents will furnish innovative treatment modalities and enhance clinical outcomes in managing invasive fungal infections.
9.COMPERA 2.0 risk stratification in patients with severe aortic stenosis: implication for group 2 pulmonary hypertension.
Zongye CAI ; Xinrui QI ; Dao ZHOU ; Hanyi DAI ; Abuduwufuer YIDILISI ; Ming ZHONG ; Lin DENG ; Yuchao GUO ; Jiaqi FAN ; Qifeng ZHU ; Yuxin HE ; Cheng LI ; Xianbao LIU ; Jian'an WANG
Journal of Zhejiang University. Science. B 2025;26(11):1076-1085
COMPERA 2.0 risk stratification has been demonstrated to be useful in patients with precapillary pulmonary hypertension (PH). However, its suitability for patients at risk for post-capillary PH or PH associated with left heart disease (PH-LHD) is unclear. To investigate the use of COMPERA 2.0 in patients with severe aortic stenosis (SAS) undergoing transcatheter aortic valve replacement (TAVR), who are at risk for post-capillary PH, a total of 327 eligible SAS patients undergoing TAVR at our institution between September 2015 and November 2020 were included in the study. Patients were classified into four strata before and after TAVR using the COMPERA 2.0 risk score. The primary endpoint was all-cause mortality. Survival analysis was performed using Kaplan-Meier curves, log-rank test, and Cox proportional hazards regression model. The study cohort had a median (interquartile range) age of 76 (70‒80) years and a pulmonary arterial systolic pressure of 33 (27‒43) mmHg (1 mmHg=0.133 kPa) before TAVR. The overall mortality was 11.9% during 26 (15‒47) months of follow-up. Before TAVR, cumulative mortality was higher with an increase in the risk stratum level (log-rank, both P<0.001); each increase in the risk stratum level resulted in an increased risk of death (hazard ratio (HR) 2.53, 95% confidential interval (CI) 1.54‒4.18, P<0.001), which was independent of age, sex, estimated glomerular filtration rate (eGFR), hemoglobin, albumin, and valve type (HR 1.76, 95% CI 1.01‒3.07, P=0.047). Similar results were observed at 30 d after TAVR. COMPERA 2.0 can serve as a useful tool for risk stratification in patients with SAS undergoing TAVR, indicating its potential application in the management of PH-LHD. Further validation is needed in patients with confirmed post-capillary PH by right heart catheterization.
Humans
;
Aortic Valve Stenosis/complications*
;
Aged
;
Hypertension, Pulmonary/mortality*
;
Male
;
Female
;
Transcatheter Aortic Valve Replacement
;
Aged, 80 and over
;
Risk Assessment/methods*
;
Proportional Hazards Models
;
Kaplan-Meier Estimate
;
Retrospective Studies
10.Expert consensus on management of instrument separation in root canal therapy.
Yi FAN ; Yuan GAO ; Xiangzhu WANG ; Bing FAN ; Zhi CHEN ; Qing YU ; Ming XUE ; Xiaoyan WANG ; Zhengwei HUANG ; Deqin YANG ; Zhengmei LIN ; Yihuai PAN ; Jin ZHAO ; Jinhua YU ; Zhuo CHEN ; Sijing XIE ; He YUAN ; Kehua QUE ; Shuang PAN ; Xiaojing HUANG ; Jun LUO ; Xiuping MENG ; Jin ZHANG ; Yi DU ; Lei ZHANG ; Hong LI ; Wenxia CHEN ; Jiayuan WU ; Xin XU ; Jing ZOU ; Jiyao LI ; Dingming HUANG ; Lei CHENG ; Tiemei WANG ; Benxiang HOU ; Xuedong ZHOU
International Journal of Oral Science 2025;17(1):46-46
Instrument separation is a critical complication during root canal therapy, impacting treatment success and long-term tooth preservation. The etiology of instrument separation is multifactorial, involving the intricate anatomy of the root canal system, instrument-related factors, and instrumentation techniques. Instrument separation can hinder thorough cleaning, shaping, and obturation of the root canal, posing challenges to successful treatment outcomes. Although retrieval of separated instrument is often feasible, it carries risks including perforation, excessive removal of tooth structure and root fractures. Effective management of separated instruments requires a comprehensive understanding of the contributing factors, meticulous preoperative assessment, and precise evaluation of the retrieval difficulty. The application of appropriate retrieval techniques is essential to minimize complications and optimize clinical outcomes. The current manuscript provides a framework for understanding the causes, risk factors, and clinical management principles of instrument separation. By integrating effective strategies, endodontists can enhance decision-making, improve endodontic treatment success and ensure the preservation of natural dentition.
Humans
;
Root Canal Therapy/adverse effects*
;
Consensus
;
Root Canal Preparation/adverse effects*

Result Analysis
Print
Save
E-mail