1.Buzhong Yiqitang Regulates Endoplasmic Reticulum Stress via Nrf2/ROS/PERK/CHOP Signaling Pathway to Attenuate Cisplatin Resistance in NSCLC
He LI ; Yuetong LIU ; Jingyi HUANG ; Qirui MU ; Chunying LIU ; Yuan GAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):79-89
ObjectiveTo explore the molecular mechanism of Buzhong Yiqitang in attenuating cisplatin resistance of non-small cell lung cancer (NSCLC) cells (A549/DDP) by regulating endoplasmic reticulum stress (ERS) via the nuclear factor E2-related factor 2 (Nrf2)/reactive oxygen species (ROS)/double-stranded RNA-activated protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK)/CCAAT enhancer-binding protein homologous protein (CHOP) signaling pathway. MethodsSprague Dawley
2.Buzhong Yiqitang Induces Ferroptosis by Regulating PCBP1 to Attenuate Cisplatin Resistance in Non-small Cell Lung Cancer
Yuetong LIU ; He LI ; Qirui MU ; Jingyi HUANG ; Haoran CAI ; Chunying LIU ; Yuan GAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):90-97
ObjectiveTo explore the molecular mechanism of Buzhong Yiqitang in attenuating cisplatin resistance in non-small cell lung cancer (NSCLC) by inducing ferroptosis via poly(rC)-binding protein 1 (PCBP1). MethodsThe serum containing Buzhong Yiqitang was prepared and cisplatin-resistant human non-small cell lung cancer (NSCLC) cells (A549/DDP) were cultured and randomly grouped as follows: Blank (10% blank serum), model (10% blank serum+20 mg·L-1 cisplatin), Buzhong Yiqitang (10% serum containing Buzhong Yiqitang+20 mg·L-1 cisplatin), Fe-1 (10% blank serum+20 mg·L-1 cisplatin+5 μmol·L-1 Fe-1), and Buzhong Yiqitang+Fe-1 (10% serum containing Buzhong Yiqitang+20 mg·L-1 cisplatin+5 μmol·L-1 Fe-1). Firstly, PCR Array was used to screen ferroptosis-related genes regulated by Buzhong Yiqitang, and PCBP1 was identified as the target for studying the attenuation of cisplatin resistance by Buzhong Yiqitang. Subsequently, the median inhibitory concentration (IC50) of cisplatin in each group was determined by the cell counting kit-8 (CCK-8) method and the resistance index (RI) was calculated. The ultrastructure of A549/DDP cells in each group was observed by transmission electron microscopy. The protein levels of PCBP1 and glutathione peroxidase 4 (GPX4) were determined by Western blot. The lipid reactive oxygen species (ROS) content in each group was determined by the C11-BODIRY 581/591 fluorescence probe. The ferrous ion assay kit was used to measure the ferrous ion content in each group. The malondialdehyde (MDA) assay kit was used to determine the MDA content in each group. ResultsCompared with model group, the IC50 of cisplatin and the RI of A549/DDP cells decreased in the Buzhong Yiqitang group (P<0.05) but increased in the Fe-1 group (P<0.05). The IC50 of cisplatin and the RI of A549/DDP cells in the Buzhong Yiqitang+Fe-1 group were lower than those in the Fe-1 group (P<0.05). Compared with the model group, the Buzhong Yiqitang group showed obvious mitochondrial ferroptosis, while the mitochondrial damage became less obvious after Fe-1 treatment. Compared with that in the Fe-1 group, the mitochondrial ferroptosis was aggravated after the intervention with Buzhong Yiqitang. Compared with blank group, the model group showed down-regulated expression levels of PCBP1 and GPX4 (P<0.05) and increased content of lipid ROS, ferrous ions, and MDA (P<0.05) in A549/DDP cells. Compared with model group, the Buzhong Yiqitang group showed down-regulated expression levels of PCBP1 and GPX4 (P<0.05) and increased content of lipid ROS, ferrous ions, and MDA (P<0.05), while the Fe-1 group showed up-regulated expression levels of PCBP1 and GPX4 (P<0.05) and reduced content of lipid ROS, ferrous ions, and MDA (P<0.05). Compared with the Fe-1 group, the Buzhong Yiqitang+Fe-1 group showed down-regulated expression levels of PCBP1 and GPX4 and increased content of lipid ROS, ferrous ions, and MDA (P<0.05). ConclusionBuzhong Yiqitang attenuated cisplatin resistance in NSCLC by regulating PCBP1 to induce ferroptosis.
3.Buzhong Yiqitang Regulates Endoplasmic Reticulum Stress to Attenuate Cisplatin Resistance in Non-small Cell Lung Cancer via Nrf2/ROS Pathway
Dan YU ; Qirui MU ; He LI ; Yuetong LIU ; Jingyi HUANG ; Yuan GAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):98-104
ObjectiveTo investigate the mechanism of Buzhong Yiqitang in attenuating cisplatin resistance in non-small cell lung cancer by observing the effects of Buzhong Yiqitang on endoplasmic reticulum stress-related molecules in human lung adenocarcinoma cells (A549) and cisplatin-resistant cells in human lung adenocarcinoma cells (A549/DDP) via the nuclear factor E2-related factor 2(Nrf2)/reactive oxygen species(ROS) pathway. MethodsThe serum containing Buzhong Yiqitang was prepared and A549 cells and A549/DDP cells were cultured. The cells were randomized into groups A (A549 cells+blank serum), B (A549 cells+20 mg·L-1 cisplatin+blank serum), C (A549 cells+20 mg·L-1 cisplatin+10% Buzhong Yiqitang-containing serum), D (A549/DDP cells+blank serum), E (A549/DDP cells+20 mg·L-1 cisplatin+blank serum), and F (A549/DDP cells+20 mg·L-1 cisplatin+10% Buzhong Yiqitang-containing serum). The cell counting kit-8 (CCK-8) method was used to detect the half maximal inhibitory concentration (IC50) of cisplatin. The protein levels of Nrf2 and p-Nrf2 were determined by Western blotting. The DCFH-DA fluorescent probe was used to measure the content of reactive oxygen species (ROS) in each group. The protein levels of glucose-regulated protein 78 (GRP78), activated transcription factor 6 (ATF6), and C/EBP-homologous protein (CHOP) were determined by Western blot. ResultsCompared with group B, group C showed a reduction in IC50 of cisplatin (P<0.05), which held true in group E compared with group F (P<0.05). Moreover, the IC50 of cisplatin to A549/DDP cells was higher than that to A549 cells before and after Buzhong Yiqitang intervention (P<0.05). Compared with group A, group B showed up-regulated protein levels of Nrf2 and p-Nrf2 (P<0.05). Compared with group B, group C showed down-regulated protein levels of Nrf2 and p-Nrf2 (P<0.05). Compared with group D, group E showed up-regulated protein levels of Nrf2 and p-Nrf2 (P<0.05), which, however, were significantly down-regulated in group F (P<0.05). The ROS content and the protein levels of GRP78, ATF6, and CHOP followed a descending trend of group C > group B > group A in A549 cells and group F > group E > group D in A549/DDP cells (P<0.05). Moreover, the ROS content and the protein levels of GRP78, ATF6, and CHOP in A549 cells were higher than those in A549/DDP cells before and after Buzhong Yiqitang intervention (P<0.05). ConclusionBuzhong Yiqitang may regulate endoplasmic reticulum stress via the Nrf2/ROS pathway to attenuate cisplatin resistance in non-small cell lung cancer.
4.Traditional Chinese Medicine Ameliorates Tumor Chemotherapy Resistance: A Review
Jingyi HUANG ; Yuetong LIU ; He LI ; Qirui MU ; Chenyi LI ; Chunying LIU ; Yuan GAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):105-116
In the process of tumor chemotherapy, the emergence of multi-drug resistance (MDR) has always been a thorny problem, which is a result of the joint action of the host, tumor cells, and the immune microenvironment. Tumor cells can escape the toxicity of chemotherapeutic drugs through multiple pathways, being easy to produce drug resistance. MDR greatly restricts the effect of chemotherapeutic drugs on tumor cells and affects their therapeutic effects. Traditional Chinese medicine (TCM) has the unique advantages of multi-target, multi-pathway and individualized treatment. The TCM treatment of tumors emphasizes regulating Yin and Yang, as well as reinforcing healthy Qi and dispelling pathogen. In recent years, TCM has demonstrated remarkable efficacy in the treatment of tumors and the amelioration of multi-drug resistance. TCM not only can target the phenomenon of MDR but also greatly weakens the side effects of the patients after the chemotherapy, thus improving the survival quality and rate of the patients. Accordingly, many patients adopt TCM as an adjuvant therapy during or after chemotherapy. The binding of TCM to targets can reverse the drug resistance of various tumors, which has become an emerging research highlight. From the regulatory mechanism of TCM on MDR of tumors, this paper introduces the mechanisms by which tumor cells continue to grow, proliferate, and metastasize by adjusting the intracellular drug concentration, altering or utilizing the tumor microenvironment, and affecting the cell death mode to achieve the resistance to chemotherapeutic drugs. In this regard, the active ingredients and compound prescriptions of TCM can increase the sensitivity of chemotherapeutic drugs by down-regulating drug transporters, improving the tumor microenvironment, and modulating the drug resistance pathways associated with apoptosis, autophagy, ferroptosis, or pyroptosis. The aim of this paper is to explore more clinical practical value of TCM in the treatment of tumors and provide exploratory ideas and a theoretical basis for the future research on tumors and MDR.
5.Concept,Organizational Structure,and Medical Model of the Traditional Chinese Medicine Myocardial Infarction Unit
Jun LI ; Jialiang GAO ; Jie WANG ; Zhenpeng ZHANG ; Xinyuan WU ; Ji WU ; Zicong XIE ; Jingrun CUI ; Haoqiang HE ; Yuqing TAN ; Chunkun YANG
Journal of Traditional Chinese Medicine 2025;66(9):873-877
The traditional Chinese medicine (TCM) myocardial infarction (MI) unit is a standardized, regulated, and continuous integrated care unit guided by TCM theory and built upon existing chest pain centers or emergency care units. This unit emphasizes multidisciplinary collaboration and forms a restructured clinical entity without altering current departmental settings, offering comprehensive diagnostic and therapeutic services with full participation of TCM in the treatment of MI. Its core medical model is patient-centered and disease-focused, providing horizontally integrated TCM-based care across multiple specialties and vertically constructing a full-cycle treatment unit for MI, delivering prevention, treatment, and rehabilitation during the acute, stable, and recovery phases. Additionally, the unit establishes a TCM-featured education and prevention mechanism for MI to guide patients in proactive health management, reduce the incidence of myocardial infarction, and improve quality of life.
6.Efficacy and Mechanism of Shuanghua Drink in Treating Primary Dysmenorrhea Based on COX-2/NF-κB Signaling Pathway
Yuncheng MA ; Yuanyuan SHI ; Zhen LIU ; Yuxi WANG ; Yuan TIAN ; Qian LI ; Xiaozhu WANG ; Cheng HE ; Wenhui XU ; Weiling WANG ; Jian GAO ; Ting WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):72-80
ObjectiveTo evaluate the efficacy of Shuanghua drink in treating primary dysmenorrhea in the rat model and explore its mechanism of action. MethodsAn oxytocin-induced writhing mouse model was established to evaluate the analgesic effect of Shuanghua drink. Forty-eight non-pregnant female institute of cancer research (ICR) mice were randomly divided into six groups, including a blank group, a model group, an ibuprofen group (85.00 mg·kg-1), a low-dose group of Shuanghua drink (7.14 mL·kg-1), a medium-dose group of Shuanghua drink (14.28 mL·kg-1), and a high-dose group of Shuanghua drink (28.57 mL·kg-1). Each group consisted of eight mice. All treatment groups received daily intragastric administration at corresponding doses for 10 consecutive days. One hour after the final administration, 2 U of oxytocin was intraperitoneally injected per mouse. The writhing latency and number of writhing within 20 minutes were recorded. A primary dysmenorrhea rat model was established by using estradiol benzoate and oxytocin to evaluate the inhibitory effect of Shuanghua drink on the contraction of uterine smooth muscle. Forty-eight non-pregnant female Sprague-Dawley (SD) rats were divided into six groups, including a blank group, a model group, an ibuprofen group (51.00 mg·kg-1), a low-dose group of Shuanghua drink (4.28 mL·kg-1), a medium-dose group of Shuanghua drink (8.57 mL·kg-1), and a high-dose group of Shuanghua drink (17.10 mL·kg-1). Each group consisted of eight rats. Rats received subcutaneous injections of estradiol benzoate for 10 consecutive days to enhance uterine sensitivity. On the eleventh day, oxytocin (2 U/rat) was intraperitoneally administered to induce abnormal uterine contractions for establishing the primary dysmenorrhea model. All treatment groups received daily intragastric administration from the second day of modeling for 10 days. The effects of Shuanghua drink were evaluated by using parameters including uterine motility and the variation rate of uterine motility. The mechanism of action was investigated in rats with primary dysmenorrhea. The content of prostaglandin F2α (PGF2α), prostaglandin E2 (PGE2), thromboxane B2 (TXB2), prostacyclin metabolite (6-keto-PGF1α), and β-endorphin (β-EP) in uterine tissue of rats was detected by using enzyme-linked immunosorbent assay (ELISA). The changes in the content of nitric oxide (NO) and inducible nitric oxide synthase (iNOS) were analyzed via colorimetric assay. Western blot was performed to determine the content of phosphorylated inhibitor of kappa B kinase beta (p-IKKβ)/IKKβ, phosphorylated inhibitor of kappa B alpha (p-IκBα), IκBα, phosphorylated p65 (p-p65), p65, and cyclooxygenase-2 (COX-2) proteins in uterine tissue of rats. ResultsIn the oxytocin-induced writhing mouse model, the model group exhibited significantly shortened writhing latency and increased writhing frequency compared to the control group (P<0.01). Both the ibuprofen group and the high-dose group of Shuanghua drink displayed prolonged writhing latency (P<0.05), while the ibuprofen group and the low-dose, medium-dose, and high-dose groups of Shuanghua drink exhibited reduced writhing frequency (P<0.01). In the primary dysmenorrhea rat model, the uterine motility and its variation rate in the model group were significantly higher than those in the blank group (P<0.01). These parameters were markedly suppressed by ibuprofen and Shuanghua drink at all tested doses (P<0.01). For the mechanism of action, the model group showed significantly increased PGF2α/PGE2, TXB2/6-keto-PGF1α, NO, and iNOS in uterine tissue (P<0.05, P<0.01) and significantly decreased β-EP (P<0.01). These parameters were significantly attenuated in the ibuprofen group and the low-dose, medium-dose, and high-dose groups of Shuanghua drink. The PGF2α/PGE2 (P<0.01), TXB2/6-keto-PGF1α (P<0.01), NO (medium-dose group P<0.05), and iNOS (P<0.01) were reduced, and the β-EP (medium-dose group P<0.05) was up-regulated. Compared to the model group, the ibuprofen group and medium-dose group of Shuanghua drink showed significantly increased content of β-EP in the serum of rats (P<0.05). Compared to the blank group, the model group showed significantly elevated expressions of COX-2, p-IKKβ/IKKβ, p-IκBα/IκBα, and p-p65/p65 proteins (P<0.01) and significantly reduced anti-inflammatory protein IκBα (P<0.05). Compared to the model group, the ibuprofen group and the low-dose, medium-dose, and high-dose groups of Shuanghua drink showed significantly reduced expressions of COX-2 (P<0.01), p-IKKβ/IKKβ (P<0.01), p-IκBα/IκBα (P<0.05, P<0.01), and p-p65/p65(P<0.01) and up-regulated expression of IκBα protein (P<0.05, P<0.01). ConclusionShuanghua drink effectively alleviates primary dysmenorrhea through analgesia and suppression of abnormal contractions of uterine smooth muscle. Its mechanism may be mediated by reduced levels of PGF2α/PGE2, TXB2/6-keto-PGF1α, iNOS, and NO, elevated β-EP level, and inhibited COX-2/NF-κB signaling pathway.
7.Efficacy and Mechanism of Shuanghua Drink in Treating Primary Dysmenorrhea Based on COX-2/NF-κB Signaling Pathway
Yuncheng MA ; Yuanyuan SHI ; Zhen LIU ; Yuxi WANG ; Yuan TIAN ; Qian LI ; Xiaozhu WANG ; Cheng HE ; Wenhui XU ; Weiling WANG ; Jian GAO ; Ting WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):72-80
ObjectiveTo evaluate the efficacy of Shuanghua drink in treating primary dysmenorrhea in the rat model and explore its mechanism of action. MethodsAn oxytocin-induced writhing mouse model was established to evaluate the analgesic effect of Shuanghua drink. Forty-eight non-pregnant female institute of cancer research (ICR) mice were randomly divided into six groups, including a blank group, a model group, an ibuprofen group (85.00 mg·kg-1), a low-dose group of Shuanghua drink (7.14 mL·kg-1), a medium-dose group of Shuanghua drink (14.28 mL·kg-1), and a high-dose group of Shuanghua drink (28.57 mL·kg-1). Each group consisted of eight mice. All treatment groups received daily intragastric administration at corresponding doses for 10 consecutive days. One hour after the final administration, 2 U of oxytocin was intraperitoneally injected per mouse. The writhing latency and number of writhing within 20 minutes were recorded. A primary dysmenorrhea rat model was established by using estradiol benzoate and oxytocin to evaluate the inhibitory effect of Shuanghua drink on the contraction of uterine smooth muscle. Forty-eight non-pregnant female Sprague-Dawley (SD) rats were divided into six groups, including a blank group, a model group, an ibuprofen group (51.00 mg·kg-1), a low-dose group of Shuanghua drink (4.28 mL·kg-1), a medium-dose group of Shuanghua drink (8.57 mL·kg-1), and a high-dose group of Shuanghua drink (17.10 mL·kg-1). Each group consisted of eight rats. Rats received subcutaneous injections of estradiol benzoate for 10 consecutive days to enhance uterine sensitivity. On the eleventh day, oxytocin (2 U/rat) was intraperitoneally administered to induce abnormal uterine contractions for establishing the primary dysmenorrhea model. All treatment groups received daily intragastric administration from the second day of modeling for 10 days. The effects of Shuanghua drink were evaluated by using parameters including uterine motility and the variation rate of uterine motility. The mechanism of action was investigated in rats with primary dysmenorrhea. The content of prostaglandin F2α (PGF2α), prostaglandin E2 (PGE2), thromboxane B2 (TXB2), prostacyclin metabolite (6-keto-PGF1α), and β-endorphin (β-EP) in uterine tissue of rats was detected by using enzyme-linked immunosorbent assay (ELISA). The changes in the content of nitric oxide (NO) and inducible nitric oxide synthase (iNOS) were analyzed via colorimetric assay. Western blot was performed to determine the content of phosphorylated inhibitor of kappa B kinase beta (p-IKKβ)/IKKβ, phosphorylated inhibitor of kappa B alpha (p-IκBα), IκBα, phosphorylated p65 (p-p65), p65, and cyclooxygenase-2 (COX-2) proteins in uterine tissue of rats. ResultsIn the oxytocin-induced writhing mouse model, the model group exhibited significantly shortened writhing latency and increased writhing frequency compared to the control group (P<0.01). Both the ibuprofen group and the high-dose group of Shuanghua drink displayed prolonged writhing latency (P<0.05), while the ibuprofen group and the low-dose, medium-dose, and high-dose groups of Shuanghua drink exhibited reduced writhing frequency (P<0.01). In the primary dysmenorrhea rat model, the uterine motility and its variation rate in the model group were significantly higher than those in the blank group (P<0.01). These parameters were markedly suppressed by ibuprofen and Shuanghua drink at all tested doses (P<0.01). For the mechanism of action, the model group showed significantly increased PGF2α/PGE2, TXB2/6-keto-PGF1α, NO, and iNOS in uterine tissue (P<0.05, P<0.01) and significantly decreased β-EP (P<0.01). These parameters were significantly attenuated in the ibuprofen group and the low-dose, medium-dose, and high-dose groups of Shuanghua drink. The PGF2α/PGE2 (P<0.01), TXB2/6-keto-PGF1α (P<0.01), NO (medium-dose group P<0.05), and iNOS (P<0.01) were reduced, and the β-EP (medium-dose group P<0.05) was up-regulated. Compared to the model group, the ibuprofen group and medium-dose group of Shuanghua drink showed significantly increased content of β-EP in the serum of rats (P<0.05). Compared to the blank group, the model group showed significantly elevated expressions of COX-2, p-IKKβ/IKKβ, p-IκBα/IκBα, and p-p65/p65 proteins (P<0.01) and significantly reduced anti-inflammatory protein IκBα (P<0.05). Compared to the model group, the ibuprofen group and the low-dose, medium-dose, and high-dose groups of Shuanghua drink showed significantly reduced expressions of COX-2 (P<0.01), p-IKKβ/IKKβ (P<0.01), p-IκBα/IκBα (P<0.05, P<0.01), and p-p65/p65(P<0.01) and up-regulated expression of IκBα protein (P<0.05, P<0.01). ConclusionShuanghua drink effectively alleviates primary dysmenorrhea through analgesia and suppression of abnormal contractions of uterine smooth muscle. Its mechanism may be mediated by reduced levels of PGF2α/PGE2, TXB2/6-keto-PGF1α, iNOS, and NO, elevated β-EP level, and inhibited COX-2/NF-κB signaling pathway.
8.Isorhamnetin Alleviates Inflammation-Induced Crosstalk between Kynurenine Pathway and Gut Microbiota in Depressed Mice
Mengjie XU ; Wei HE ; Ke YAN ; Xinru GAO ; Jun LI ; Dongyue XU ; Jiao XIAO ; Tingxu YAN
Biomolecules & Therapeutics 2025;33(2):297-310
Depression is a widespread psychiatric disorder with complex pathogenesis and unsatisfactory therapeutic effects. As a native flavonoid, Isorhamnetin (ISO) has been deemed to exert neuroprotective effects by antioxidation and regulation of immunity. However, no reports of anti-depressed effect of ISO have yet been found. The present study was conducted to clarify the mechanism basis of anti-depressed effect of ISO utilizing behavioral, biochemical, molecular approaches in vitro and in vivo and bio-informatics analysis. The effects of ISO on depressed mice was investigated through the SPT and FST, and the lesions were examined by H&E staining. Besides, the inflammatory factor and indicator in kynurenine pathway were assessed through detection kits, and the microbiota were checked by 16sRNA. Molecular docking study was performed to investigate the target of ISO. Additionally, Western blot was used to test the activation of PI3K/AKT signaling pathway. The results indicated that ISO could enhance the sugar water preference of mice in SPT and reduce immobility time in FST. Further more, ISO suppressed peripheral and central inflammation, regulated the changes in kynurenine pathway and gut microbiota, inhibited activation of PI3K/AKT pathway, and presented good binding patterns with target proteins on PI3K/AKT signaling pathway. Collectively, these findings demonstrate that ISO alleviated depression-like behaviour by normalizing inflammation-induced dysregulation of the crosstalk between KP and gut microbiota disorder through regulated PI3K/AKT/NF-κB pathway.
9.Isorhamnetin Alleviates Inflammation-Induced Crosstalk between Kynurenine Pathway and Gut Microbiota in Depressed Mice
Mengjie XU ; Wei HE ; Ke YAN ; Xinru GAO ; Jun LI ; Dongyue XU ; Jiao XIAO ; Tingxu YAN
Biomolecules & Therapeutics 2025;33(2):297-310
Depression is a widespread psychiatric disorder with complex pathogenesis and unsatisfactory therapeutic effects. As a native flavonoid, Isorhamnetin (ISO) has been deemed to exert neuroprotective effects by antioxidation and regulation of immunity. However, no reports of anti-depressed effect of ISO have yet been found. The present study was conducted to clarify the mechanism basis of anti-depressed effect of ISO utilizing behavioral, biochemical, molecular approaches in vitro and in vivo and bio-informatics analysis. The effects of ISO on depressed mice was investigated through the SPT and FST, and the lesions were examined by H&E staining. Besides, the inflammatory factor and indicator in kynurenine pathway were assessed through detection kits, and the microbiota were checked by 16sRNA. Molecular docking study was performed to investigate the target of ISO. Additionally, Western blot was used to test the activation of PI3K/AKT signaling pathway. The results indicated that ISO could enhance the sugar water preference of mice in SPT and reduce immobility time in FST. Further more, ISO suppressed peripheral and central inflammation, regulated the changes in kynurenine pathway and gut microbiota, inhibited activation of PI3K/AKT pathway, and presented good binding patterns with target proteins on PI3K/AKT signaling pathway. Collectively, these findings demonstrate that ISO alleviated depression-like behaviour by normalizing inflammation-induced dysregulation of the crosstalk between KP and gut microbiota disorder through regulated PI3K/AKT/NF-κB pathway.
10.Constructing a model of degenerative scoliosis using finite element method:biomechanical analysis in etiology and treatment
Kai HE ; Wenhua XING ; Shengxiang LIU ; Xianming BAI ; Chen ZHOU ; Xu GAO ; Yu QIAO ; Qiang HE ; Zhiyu GAO ; Zhen GUO ; Aruhan BAO ; Chade LI
Chinese Journal of Tissue Engineering Research 2025;29(3):572-578
BACKGROUND:Degenerative scoliosis is defined as a condition that occurs in adulthood with a coronal cobb angle of the spine>10° accompanied by sagittal deformity and rotational subluxation,which often produces symptoms of spinal cord and nerve compression,such as lumbar pain,lower limb pain,numbness,weakness,and neurogenic claudication.The finite element method is a mechanical analysis technique for computer modelling,which can be used for spinal mechanics research by building digital models that can realistically restore the human spine model and design modifications. OBJECTIVE:To review the application of finite element method in the etiology and treatment of degenerative scoliosis. METHODS:The literature databases CNKI,PubMed,and Web of Science were searched for articles on the application of finite element method in degenerative scoliosis published before October 2023.Search terms were"finite element analysis,biomechanics,stress analysis,degenerative scoliosis,adult spinal deformity"in Chinese and English.Fifty-four papers were finally included. RESULTS AND CONCLUSION:(1)The biomechanical findings from the degenerative scoliosis model constructed using the finite element method were identical to those from the in vivo experimental studies,which proves that the finite element method has a high practical value in degenerative scoliosis.(2)The study of the etiology and treatment of degenerative scoliosis by the finite element method is conducive to the prevention of the occurrence of the scoliosis,slowing down the progress of the scoliosis,the development of a more appropriate treatment plan,the reduction of complications,and the promotion of the patients'surgical operation.(3)The finite element method has gradually evolved from a single bony structure to the inclusion of soft tissues such as muscle ligaments,and the small sample content is increasingly unable to meet the research needs.(4)The finite element method has much room for exploration in degenerative scoliosis.

Result Analysis
Print
Save
E-mail