1.Screening key genes of PANoptosis in hepatic ischemia-reperfusion injury based on bioinformatics
Lirong ZHU ; Qian GUO ; Jie YANG ; Qiuwen ZHANG ; Guining HE ; Yanqing YU ; Ning WEN ; Jianhui DONG ; Haibin LI ; Xuyong SUN
Organ Transplantation 2025;16(1):106-113
Objective To explore the relationship between PANoptosis and hepatic ischemia-reperfusion injury (HIRI), and to screen the key genes of PANoptosis in HIRI. Methods PANoptosis-related differentially expressed genes (PDG) were obtained through the Gene Expression Omnibus database and GeneCards database. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were used to explore the biological pathways related to PDG. A protein-protein interaction network was constructed. Key genes were selected, and their diagnostic value was assessed and validated in the HIRI mice. Immune cell infiltration analysis was performed based on the cell-type identification by estimating relative subsets of RNA transcripts. Results A total of 16 PDG were identified. GO analysis showed that PDG were closely related to cellular metabolism. KEGG analysis indicated that PDG were mainly enriched in cellular death pathways such as apoptosis and immune-related signaling pathways such as the tumor necrosis factor signaling pathway. GSEA results showed that key genes were mainly enriched in immune-related signaling pathways such as the mitogen-activated protein kinase (MAPK) signaling pathway. Two key genes, DFFB and TNFSF10, were identified with high accuracy in diagnosing HIRI, with areas under the curve of 0.964 and 1.000, respectively. Immune infiltration analysis showed that the control group had more infiltration of resting natural killer cells, M2 macrophages, etc., while the HIRI group had more infiltration of M0 macrophages, neutrophils, and naive B cells. Real-time quantitative polymerase chain reaction results showed that compared with the Sham group, the relative expression of DFFB messenger RNA in liver tissue of HIRI group mice increased, and the relative expression of TNFSF10 messenger RNA decreased. Cibersort analysis showed that the infiltration abundance of naive B cells was positively correlated with DFFB expression (r=0.70, P=0.035), and the infiltration abundance of M2 macrophages was positively correlated with TNFSF10 expression (r=0.68, P=0.045). Conclusions PANoptosis-related genes DFFB and TNFSF10 may be potential biomarkers and therapeutic targets for HIRI.
2.Hepatitis C virus infection status among drug users in Baoshan District
CHEN Jianshuang ; ZHU Liming ; LE Boxin ; WANG Chengyi ; LIU Xiaofeng ; HE Fan
Journal of Preventive Medicine 2025;37(2):168-172
Objective:
To investigate the prevalence and influencing factors of hepatitis C virus (HCV) infection among drug users in Baoshan District, Shanghai Municipality, so as to provide insights into strengthening HCV intervention among drug users.
Methods:
Drug users under community management in Baoshan District from 2017 to 2023 were recruited. Demographic information, drug use behaviors, sexual behaviors and receipt of intervention service were collected through questionnaire surveys. Blood samples were collected for HCV antibody testing, and the prevalence of anti-HCV antibody was analyzed. Factors affecting the prevalence of anti-HCV antibody among drug users were analyzed using a multivariable logistic regression model.
Results:
A total of 2 801 drug users were surveyed, including 2 233 males (79.72%) and 568 females (20.28%). The majority of drug users were aged 40 to <60 years (1 663 drug users, 59.37%). The prevalence of anti-HCV antibody was 28.35%, showing an overall upward trend from 2017 to 2023 (P<0.05). Multivariable logistic regression analysis showed that females (OR=1.468, 95%CI: 1.169-1.844), 40 years and over (40 to <50 years, OR=2.441, 95%CI: 1.838-3.242; 50 to <60 years, OR=2.377, 95%CI: 1.787-3.161; 60 to 97 years, OR=1.637, 95%CI: 1.163-2.304), using traditional drugs (OR=2.488, 95%CI: 1.967-3.147) or mixed drugs (OR=2.950, 95%CI: 1.974-4.409), having injected drugs (not share needles, OR=3.649, 95%CI: 2.849-4.673; share needles, OR=3.532, 95%CI: 1.851-6.738) and never using condoms during sexual contacts with spouses/cohabitants in the past year (OR=1.975, 95%CI: 1.354-2.879) were associated with a higher prevalence of anti-HCV antibody; the educational level of high school/technical secondary school (OR=0.483, 95%CI: 0.280-0.835) or college and above (OR=0.280, 95%CI: 0.129-0.608) was associated with a lower prevalence of anti-HCV antibody.
Conclusions
The prevalence of anti-HCV antibody among drug users in Baoshan District showed an upward trend from 2017 to 2023. Gender, age, educational level, type of drugs, history of drug injection and never using condoms during sexual contacts with spouses/cohabitants were influencing factors for prevalence of anti-HCV antibody among drug users.
3.Epidemiological investigation on a case of acute flaccid paralysis with detection of vaccine-derived poliovirus
TANG Xuewen ; BAI Yiran ; SU Ying ; GONG Liming ; YAN Rui ; ZHU Yao ; HE Hanqing
Journal of Preventive Medicine 2025;37(2):178-180,188
Abstract
In April 2021, type Ⅰ vaccine-derived poliovirus (VDPV) was detected from two fecal samples of a male infant with acute flaccid paralysis (AFP) in Zhejiang Province when he was admitted to the Children's Hospital Affiliated to Fudan University in Shanghai, with 12 and 14 nucleotide mutations in the VP1 region, respectively. The case had a history of immunization with three doses of poliovirus vaccines, and grade Ⅲ proximal muscle strength and grade Ⅱ distal muscle strength of the right lower limb. After symptomatic treatment, the activity of the right lower limb and the muscle strength was significantly restored, thus he was discharged. VDPV was not detected from subsequent (the 8th to 12th) fecal samples of the case and fecal samples of close contacts. No similar cases were found in medical institutions in the county, surrounding areas, neighboring villages or towns. Since the case did not exhibit clinical symptoms of poliomyelitis caused by VDPV, poliomyelitis was excluded, and the case was diagnosed with hemophilia type A based on the epidemiological investigation, laboratory tests, and the history of poliomyelitis vaccination. This event involved cross-provincial (municipal) cooperation and was responsed promptly, preventing further spread of the virus. It suggested that the sensitivity of the AFP case surveillance system should be maintained, environmental monitoring methods should be increased, and the poliomyelitis vaccination should be promoted to prevent the spread of the virus.
4.Efficiency and safety of haematopoietic stem cell collection in healthy donors
Rui HE ; Bangqiang ZHU ; Huiqin WEN ; Haijing WANG ; Maohong BIAN ; Yujie DIAO
Chinese Journal of Blood Transfusion 2025;38(2):209-213
[Objective] To explore the key factors affecting the efficiency and safety of hematopoietic stem cell apheresis. [Methods] The clinical data of 59 healthy donors who underwent allogeneic hematopoietic stem cell donation in the First Affiliated Hospital of Anhui Medical University from January 2021 to June 2024 were retrospectively analyzed. The number of CD34+ cells was used to evaluate the eligibility of stem cell collection. The effects of donor gender, age, patient weight, as well as the number of WBC, MNC, RBC, Hb, HCT, PLT, CD34+ cells, CD34+ percentage and instrument operating parameters on collection efficiency were analyzed. [Results] A total of 59 donors were enrolled, and 68 occasions of stem cell apheresis were performed, with a qualified collection rate of 56%. Donor gender, age, patient weight, total blood circulation volume, anticoagulant dosage, collection time, calcium gluconate dosage and RBC, Hb, HCT levels were not significantly correlated with the collection effect (P>0.05). Multivariate logistic regression analysis showed that the number of MNC cells, CD34+ cells and stem cell product volume were the key factors affecting the efficiency and safety. A total of 12 donors had mild adverse reactions during the collection process, and all of them were improved after treatment. [Conclusion] Optimizing apheresis strategy based on the three factors of MNC, WBC count and stem cell product volume on the day of collection will help to achieve high-quality collection and improve the success rate of transplantation.
5.Effect and mechanism of different training modes on skeletal muscle remodeling in rats with heart failure induced by myocardial infarction
Changxi FU ; Ruibo HE ; Gang MA ; Zheng ZHU ; Wenchao MA
Chinese Journal of Tissue Engineering Research 2025;29(2):221-230
BACKGROUND:Acute myocardial infarction can cause cardiac remodeling and heart failure,as well as skeletal myopathy,affecting patients'quality of life.Exercise therapy is an important rehabilitation method for patients with heart failure;however,the optimal exercise prescription has not been clarified. OBJECTIVE:To compare the effects of different exercise modes(aerobic exercise,resistance exercise)on skeletal muscle remodeling in rats with acute myocardial infarction induced heart failure and to explore the possible mechanism,so as to provide a basis for optimizing the exercise rehabilitation program. METHODS:Forty-eight Sprague-Dawley rats were randomly divided into sham operation group,myocardial infarction group,aerobic exercise group and resistance exercise group.Coronary artery ligation was used to create model of heart failure.After 3 months,animals in the aerobic exercise group and resistance exercise group underwent 12 weeks of corresponding exercise mode interventions,while those in the sham operation group and myocardial infarction group were kept quietly in mouse cages.After the experiment,maximal running speed and maximal weight-bearing load were measured by graded treadmill exercise test and ladder-climbing test respectively,and heart structure and function were evaluated by echocardiography.The heart was isolated,and hematoxylin-eosin staining and Sirius red staining were performed to detect cardiac remodeling.For the gstrocnemius muscle,ATPase staining was performed to observe changes in muscle fiber type and cell cross-sectional area,dihydroethidium method was used to evaluate reactive oxygen species levels,enzyme-linked immunosorbent method was used to determine malondialdehyde content and antioxidant enzyme activity,western blot was used to determine the expression of ubiquitin-proteasome system proteins,and the number of activated satellite cells(Pax7+/MyoD+)were detected by double immunofluorescence staining. RESULTS AND CONCLUSION:(1)Exercise performance:Compared with the sham operation group,maximal running speed and maximal weight-bearing load in the myocardial infarction group decreased(P<0.05);compared with the myocardial infarction group,the maximal running speed of the aerobic exercise group and the maximal weight-bearing load of the resistance exercise group increased(P<0.05).(2)Cardiac remodeling:Compared with the sham operation group,infarction area,myocardial cell cross-sectional area,and collagen content in the myocardial infarction group increased(P<0.05),while leftventricular ejection fraction and shortening fraction decreased(P<0.05);compared with the myocardial infarction group,there was no statistical difference in the above parameters in both aerobic exercise resistance exercise groups(P>0.05).(3)Skeletal muscle remodeling:Compared with the sham operation group,gastrocnemius muscle mass,gastrocnemius muscle mass index,cell cross-sectional area,superoxide dismutase activity,glutathione peroxidase activity,and the number of activated satellite cells decreased in myocardial infarction group(P<0.05),while reactive oxygen species content,malondialdehyde content,and the protein expression of ubiquitin,MuRF1 and MAFbx increased(P<0.05);compared with the myocardial infarction group,gastrocnemius muscle mass index,superoxide dismutase activity,the number of activated satellite cells increased in both aerobic exercise and resistance exercise groups(P<0.05),while reactive oxygen species content and the protein expression of ubiquitin,MuRF1,and MAFbx decreased(P<0.05);compared with the aerobic exercise group,gastrocnemius muscle mass,gastrocnemius muscle mass index,cell cross-sectional area,reactive oxygen species content,malondialdehyde content,the number of activated satellite cells increased in resistance exercise group(P<0.05),while superoxide dismutase activity,glutathione peroxidase activity down-regulated(P<0.05).To conclude,aerobic exercise and resistance exercise can both improve exercise performance of rats with heart failure,and the mechanism is related to reducing oxidative stress,inhibiting ubiquitin-proteasome system activity and activating satellite cells to improve skeletal muscle remodeling.Aerobic exercise has a better effect on improving skeletal muscle oxidative stress,while resistance exercise has a more significant effect on promoting skeletal muscle regeneration.
6.Causal relationship between immune cells and knee osteoarthritis:a two-sample bi-directional Mendelian randomization analysis
Guangtao WU ; Gang QIN ; Kaiyi HE ; Yidong FAN ; Weicai LI ; Baogang ZHU ; Ying CAO
Chinese Journal of Tissue Engineering Research 2025;29(5):1081-1090
BACKGROUND:Knee osteoarthritis(KOA)is a common chronic inflammatory disease that causes damage to joint cartilage and surrounding tissues.Immune cells play an important role in the immune-inflammatory response in knee osteoarthritis,but the specific mechanisms involved are still not fully understood. OBJECTIVE:To evaluate the potential causal relationship between 731 immune cell phenotypes and the risk of knee osteoarthritis using Mendelian randomization. METHODS:Summary statistics of genome-wide association studies(GWAS)for 731 immune cell phenotypes(from GCST0001391 to GCST0002121)obtained from the GWAS catalog and GWAS data for knee osteoarthritis from the IEUGWAS database(ebi-a-GCST007090)were used.Inverse variance-weighted method,MR-Egger regression,weighted median method,weighted mode method,and simple mode method were employed to investigate the causal relationship between immune cells and knee osteoarthritis.Sensitivity analyses were conducted to assess the reliability of the Mendelian randomization results.Reverse Mendelian randomization analysis was also performed using the same methods. RESULTS AND CONCLUSION:The forward MR analysis indicated significant causal relationships(FDR<0.20)between knee osteoarthritis and four immune cell phenotypes,namely CD27 on CD24+CD27+in B cells(OR=1.026,P=0.000 26,Pfdr=0.18),CD33 on CD33dim HLA DR-in myeloid cells(OR=1.014,P=0.000 50,Pfdr=0.18),and CD45RA+CD28-CD8br%CD8br in Treg cells(OR=1.001,P=0.000 78,Pfdr=0.18),and PDL-1 on monocytes in mononuclear cells(OR=0.952,P=0.000 98,Pfdr=0.18).These immune cell phenotypes showed direct positive or negative causal associations with the risk of knee osteoarthritis.Reverse Mendelian randomization analysis revealed no significant causal relationships(FDR<0.20)between knee osteoarthritis as exposure and any of the 731 immune cell phenotypes.The results of sensitivity analysis show that the P-values of the Cochran's Q test and the MR-Egger regression method for bidirectional Mendelian randomization were both greater than 0.05,indicating that there is no significant heterogeneity and pleiotropy in the causal effect analysis between immune cell phenotypes and knee osteoarthritis.To conclude,there may be four potential causal relationships between immune cell phenotypes,such as CD27 on CD24+CD27+cells,CD33 on CD33dim HLA DR-cells,CD45RA+CD28-CD8br%CD8br cells,and PDL-1 on monocytes,and knee osteoarthritis.These findings provide valuable clues for studying the biological mechanisms of knee osteoarthritis and exploring early prevention and treatment strategies.They also offer new directions for the development of intervention drugs.
7.Improvement of myocardial injury by traditional Chinese medicine:mitochondrial calcium homeostasis mediates macrophage autophagy and pyroptosis pathway
Lingyun LIU ; Guixin HE ; Weibin QIN ; Hui SONG ; Liwen ZHANG ; Weizhi TANG ; Feifei YANG ; Ziyi ZHU ; Yangbin OU
Chinese Journal of Tissue Engineering Research 2025;29(6):1276-1284
BACKGROUND:The repair process of myocardial injury involves complex cellular and molecular mechanisms,especially mitochondrial calcium homeostasis,macrophage autophagy and pyroptosis pathways.Traditional Chinese medicine(TCM)has shown significant clinical efficacy in improving myocardial injury,but its mechanism of action needs to be thoroughly investigated. OBJECTIVE:To investigate the role of mitochondrial calcium homeostasis-mediated macrophage autophagy and pyroptosis pathways in myocardial injury,and to summarize the progress of TCM in this field. METHODS:A computerized search was performed for relevant literature from the database inception to March 2024 in the Web of Science,PubMed and CNKI.The search terms were"mitochondrial calcium homeostasis,macrophage autophagy,macrophage pyroptosis,traditional Chinese medicine,myocardial injury,myocardial injury reperfusion"in Chinese and English.Through literature review,we analyzed the relationship between mitochondrial calcium homeostasis and macrophage autophagy and pyroptosis,explored the mechanism of their roles in myocardial injury,and summarized the pathways of multi-targeted,multi-pathway effects of TCM. RESULTS AND CONCLUSION:The maintenance of mitochondrial calcium homeostasis has been found to be closely related to the normal function of cardiomyocytes.Macrophages can participate in the repair process of myocardial injury through autophagy and pyroptosis pathways.Autophagy contributes to cell clearance and regulation of inflammatory response,while pyroptosis affects myocardial repair by releasing inflammatory factors.TCM regulates mitochondrial calcium homeostasis and macrophage function through multiple mechanisms.For example,astragalosid regulates calcium homeostasis by lowering mitochondrial membrane potential and inhibiting cytochrome C,and epimedium glycoside plays a role in reducing β-amyloid deposition.In addition,herbal compounds and single drugs promote myocardial repair by activating or inhibiting specific signaling pathways,such as PI3K/AKT and nuclear factor-κB signaling pathways.Future studies should focus on the interactions between mitochondrial calcium homeostasis,autophagy and pyroptosis pathways,as well as how TCM can exert therapeutic effects through these pathways to provide new strategies and drugs for the treatment of myocardial injury.
8.Mitophagy regulates bone metabolism
Hanmin ZHU ; Song WANG ; Wenlin XIAO ; Wenjing ZHANG ; Xi ZHOU ; Ye HE ; Wei LI
Chinese Journal of Tissue Engineering Research 2025;29(8):1676-1683
BACKGROUND:In recent years,numerous studies have shown that autophagy and mitophagy play an important role in the regulation of bone metabolism.Under non-physiological conditions,mitophagy breaks the balance of bone metabolism and triggers metabolism disorders,which affect osteoblasts,osteoclasts,osteocytes,chondrocytes,bone marrow mesenchymal stem cells,etc. OBJECTIVE:To summarize the mechanism of mitophagy in regulating bone metabolic diseases and its application in clinical treatment. METHODS:PubMed,Web of Science,CNKI,WanFang and VIP databases were searched by computer using the keywords of"mitophagy,bone metabolism,osteoblasts,osteoclasts,osteocytes,chondrocytes,bone marrow mesenchymal stem cells"in English and Chinese.The search time was from 2008 to 2023.According to the inclusion criteria,90 articles were finally included for review and analysis. RESULTS AND CONCLUSION:Mitophagy promotes the generation of osteoblasts through SIRT1,PINK1/Parkin,FOXO3 and PI3K signaling pathways,while inhibiting osteoclast function through PINK1/Parkin and SIRT1 signaling pathways.Mitophagy leads to bone loss by increasing calcium phosphate particles and tissue protein kinase K in bone tissue.Mitophagy improves the function of chondrocytes through PINK1/Parkin,PI3K/AKT/mTOR and AMPK signaling pathways.Modulation of mitophagy shows great potential in the treatment of bone diseases,but there are still some issues to be further explored,such as different stages of drug-activated mitophagy,and the regulatory mechanisms of different signaling pathways.
9.Effect and mechanisms of highly active umbilical cord mesenchymal stem cells on aging spleen in elderly tree shrews
Li YE ; Chuan TIAN ; Xiaojuan ZHAO ; Mengdie CHEN ; Qianqian YE ; Qiang LI ; Zhuyin LIAO ; Ye LI ; Xiangqing ZHU ; Guangping RUAN ; Zhixu HE ; Liping SHU ; Xinghua PAN
Chinese Journal of Tissue Engineering Research 2025;29(19):4000-4010
BACKGROUND:Spleen has the functions of blood storage,hematopoiesis,and immunity.With the increase of age,the structural degeneration and functional decline of spleen lead to the impairment of immune system function,thus accelerating the aging process of the body.The treatment of spleen aging in tree shrews with highly active umbilical cord mesenchymal stem cells has not been reported. OBJECTIVE:To explore the intervention effect and mechanism of highly active umbilical cord mesenchymal stem cells on spleen aging in tree shrews. METHODS:Highly active umbilical cord mesenchymal stem cells were isolated,cultured,and obtained from the umbilical cord tissue of newborn tree shrews by caesarean section.The differentiation abilities of adipogenesis,osteogenesis,and chondrogenesis were detected by three-line differentiation kit.Cell cycle and surface markers were detected by flow cytometry.The second generation of highly active umbilical cord mesenchymal stem cells were transfected with Genechem Green Fluorescent Protein with infection complex values of 100,120,140,160,180,and 200,respectively,to screen the best transfection conditions.After transfection,the fourth generation of highly active umbilical cord mesenchymal stem cells was injected into the tail vein of tree shrews in the elderly treatment group.The young control group and the aged model group were not given special treatment.After 4 months of treatment,the spleen tissue was taken and the structure of the spleen was observed by hematoxylin-eosin staining.β-Galactosidase staining was used to detect the activity of aging-related galactosidase.Immunohistochemical staining was used to detect the expression levels of p21 and p53 proteins.Ki67 and PCNA immunofluorescence staining was used to detect cell proliferation activity.Immunofluorescence staining was used to detect the expression levels of spleen autophagy protein molecules Beclin 1 and APG5L/ATG5.Reactive oxygen species fluorescence staining was used to detect the content of reactive oxygen species in spleen tissue.CD3 immunofluorescence staining was used to detect the change of the proportion of total T lymphocytes.The secretion levels of interleukin 1β and transforming growth factor β1 in spleen were detected by enzyme linked immunosorbent assay.The distribution of highly active umbilical cord mesenchymal stem cells labeled with green fluorescent protein in spleen tissue was observed by DAPI double staining of nucleus. RESULTS AND CONCLUSION:(1)Highly active umbilical cord mesenchymal stem cells grew in a short spindle shape with fish-like growth,with a large proportion of G0/G1 phase,and had the potential to differentiate into adipogenesis,osteogenesis,and chondrogenesis.(2)Multiplicity of infection=140 and transfection for 72 hours were the best conditions for labeling tree shrews highly active umbilical cord mesenchymal stem cells with Genechem Green Fluorescent Protein.(3)Compared with the aged model group,in the aged treatment group,the spleen tissue cells of tree shrews were arranged closely,and the area of white pulp was increased(P<0.01);the boundary between red pulp and white pulp was clear;the proportion of germinal centers did not show statistically significant difference(P>0.05).The activity level of galactosidase related to spleen tissue aging was decreased(P<0.001),and the expression levels of aging protein molecules p21 and p53 were down-regulated(P<0.001).The expression levels of proliferation-related molecules Ki67 and PCNA were up-regulated(P<0.001,P<0.05);expression levels of autophagy-related molecules Beclin 1 and APG5L/ATG5 were up-regulated(P<0.001),and the content of reactive oxygen species decreased(P<0.001),and the proportion of CD3+T cells increased(P<0.05).The secretion level of interleukin 1β in the aging-related secretion phenotype decreased(P<0.001);no significant difference was found in transforming growth factor β1 level(P>0.05).Compared with the young control group,the above indexes were significantly different in the elderly treatment group(P<0.05).(4)Green fluorescent cells labeled with green fluorescent protein were observed in spleen tissue of tree shrews the elderly treatment group by frozen tissue section observation.The results show that intravenous infusion of highly active umbilical cord mesenchymal stem cells can migrate to spleen tissue,inhibit the production of reactive oxygen species,down-regulate the expression of aging-related proteins,induce autophagy,promote cell proliferation,reduce chronic inflammation,and then improve the structure and function of spleen tissue.
10.Key Genes in Phenylpropanoid Biosynthesis Pathway of Lonicera macranthoides Based on Transcriptome and Metabolome Conjoint Analysis
Jiawei HE ; Jingyu ZHANG ; Juan ZENG ; Jiayuan ZHU ; Simin ZHOU ; Meiling QU ; Ribao ZHOU ; Xiangdan LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):167-175
ObjectiveBased on the conjoint analysis of transcriptome and metabolome, the key genes in the phenylpropanoid biosynthesis pathway of Lonicera macranthoides were explored, which provided a basis for further exploring the synthesis and regulation mechanism of phenylpropanoid compounds in "Xianglei" L. macranthoides. MethodsThe stem, leaves, and three flowering flowers of "Xianglei" L. macranthoides were selected as experimental materials to construct transcriptome and metabolome. The transcriptome and metabolomics were conjointly analyzed by the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and weighted correlation network analysis (WGCNA), and the key genes in the phenylpropanoid biosynthesis pathway of L. macranthoides were explored. ResultsIn this study, 77 differential phenylpropanoids and 315 differential genes were found. Through the joint analysis of transcription and metabolism, nine key differential metabolites and four key genes related to them were finally discovered. Among them, cinnamic acid, 5-O-caffeoylshikimic acid,sinapyl alcohol, and chlorogenic acid were higher in flowers, and the content of the iconic effective component, namely chlorogenic acid,decreased sharply during the withering period. Caffeic acid,ferulic acid, 5-hydroxyconiferaldehyde,p-coumaryl alcohol, and syringin were higher in leaves. These four key genes belong to the cinnamic alcohol dehydrogenase (CAD) family, 4-coumaric acid: Coenzyme A (4CL) family, hydroxycinnamyl transferase (HCT) family, and L-phenylalanine ammonlyase (PAL) family genes. ConclusionAmong the four key genes excavated from L. macranthoides, TRINITY_DN42767_c0_g6 is related to the synthesis of p-coumaryl alcohol and sinapyl alcohol. TRINITY_DN43525_c4_g1 uses caffeic acid,ferulic acid,and cinnamic acid as substrates to catalyze the next reaction. TRINITY_DN47958_c3_g4 correlates with the synthesis of 3-p-coumaroyl quinic acid and caffeoyl-CoA, and TRINITY_DN52595_c1_g2 correlates with cinnamic acid synthesis. These findings provide a basis for further exploring the synthesis and regulation mechanism of phenylpropanoids in "Xianglei" L. macranthoides.


Result Analysis
Print
Save
E-mail