1.Evidence that metformin promotes fibrosis resolution via activating alveolar epithelial stem cells and FGFR2b signaling.
Yuqing LV ; Yanxia ZHANG ; Xueli GUO ; Baiqi HE ; Haibo XU ; Ming XU ; Lihui ZOU ; Handeng LYU ; Jin WU ; Pingping ZENG ; Saverio BELLUSCI ; Xuru JIN ; Chengshui CHEN ; Young-Chang CHO ; Xiaokun LI ; Jin-San ZHANG
Acta Pharmaceutica Sinica B 2025;15(9):4711-4729
Idiopathic pulmonary fibrosis (IPF) is a progressive disease lacking effective therapy. Metformin, an antidiabetic medication, has shown promising therapeutic properties in preclinical fibrosis models; however, its precise cellular targets and associated mechanisms in fibrosis resolution remain incompletely defined. Most research on metformin's effects has focused on mesenchymal and inflammatory responses with limited attention to epithelial cells. In this study, we utilized Sftpc lineage-traced and Fgfr2b conditional knockout mice, along with BMP2/PPARγ and AMPK inhibitors, to explore metformin's impact on alveolar epithelial cells in a bleomycin-induced pulmonary fibrosis model and cell culture. We found that metformin increased the proliferation and differentiation of alveolar type 2 (AT2) cells, particularly the recently identified injury-activated alveolar progenitors (IAAPs)-a subpopulation characterized by low SFTPC expression but enriched for PD-L1. Single-cell RNA sequencing revealed a reduction in apoptosis among mature AT2 cells. Interestingly, metformin's therapeutic effects were not significantly affected by BMP2 or PPARγ inhibition, which blocked the lipogenic differentiation of myofibroblasts. However, Fgfr2b deletion in Sftpc lineage cells significantly impaired metformin's ability to promote fibrosis resolution, a process linked to AMPK signaling. In conclusion, metformin alleviates fibrosis by directly activating AT2 cells, especially the IAAPs, through a mechanism that involves AMPK and FGFR2b signaling, but is largely independent of BMP2/PPARγ pathways.
2.Pectolinarin Against Amyloid-beta-induced Neuroinflammation and Apoptosis In vitro
Mei Tong HE ; Byeong Wook NOH ; Hyun Young KIM ; Ah Young LEE ; Eun Ju CHO
Natural Product Sciences 2024;30(4):254-261
An excess of amyloid beta (Aβ) led to a rise in ROS production, which in turn caused inflammatory reactions and mitochondrial dysfunction, both of which accelerate the progression of Alzheimer’s disease (AD).Natural flavonoids are proposed as possible agents for neurodegeneration. Pectolinarin is an important flavone mainly found in Cirsium species. In this study, we explored the potential neuroprotective effect of pectolinarin in Aβ25-35 -induced SH-SY5Y cells. The result demonstrated that pectolinarin enhanced cell viability. Pectolinarin treatment inhibited Aβ25-35 -induced ROS generation. Pectolinarin also suppressed NO generation by inhibiting the translocation of NF-ĸB and downregulating protein expression of iNOS and COX-2. Moreover, the expression of Bcl-2 increased while BAX protein decreased when the cells were exposed to pectolinarin, resulting in a decrease in the BAX/Bcl-2 ratio. Pectolinarin treatment also increased BDNF and its receptor TrkB protein expression. In conclusion, pectolinarin neuroprotected Aβ25-35 -induced inflammation and apoptosis. These findings suggest that pectolinarin may be a promising neuroprotective functional food in the protection of the neurodegenerative diseases, including AD.
3.Pectolinarin Against Amyloid-beta-induced Neuroinflammation and Apoptosis In vitro
Mei Tong HE ; Byeong Wook NOH ; Hyun Young KIM ; Ah Young LEE ; Eun Ju CHO
Natural Product Sciences 2024;30(4):254-261
An excess of amyloid beta (Aβ) led to a rise in ROS production, which in turn caused inflammatory reactions and mitochondrial dysfunction, both of which accelerate the progression of Alzheimer’s disease (AD).Natural flavonoids are proposed as possible agents for neurodegeneration. Pectolinarin is an important flavone mainly found in Cirsium species. In this study, we explored the potential neuroprotective effect of pectolinarin in Aβ25-35 -induced SH-SY5Y cells. The result demonstrated that pectolinarin enhanced cell viability. Pectolinarin treatment inhibited Aβ25-35 -induced ROS generation. Pectolinarin also suppressed NO generation by inhibiting the translocation of NF-ĸB and downregulating protein expression of iNOS and COX-2. Moreover, the expression of Bcl-2 increased while BAX protein decreased when the cells were exposed to pectolinarin, resulting in a decrease in the BAX/Bcl-2 ratio. Pectolinarin treatment also increased BDNF and its receptor TrkB protein expression. In conclusion, pectolinarin neuroprotected Aβ25-35 -induced inflammation and apoptosis. These findings suggest that pectolinarin may be a promising neuroprotective functional food in the protection of the neurodegenerative diseases, including AD.
4.Pectolinarin Against Amyloid-beta-induced Neuroinflammation and Apoptosis In vitro
Mei Tong HE ; Byeong Wook NOH ; Hyun Young KIM ; Ah Young LEE ; Eun Ju CHO
Natural Product Sciences 2024;30(4):254-261
An excess of amyloid beta (Aβ) led to a rise in ROS production, which in turn caused inflammatory reactions and mitochondrial dysfunction, both of which accelerate the progression of Alzheimer’s disease (AD).Natural flavonoids are proposed as possible agents for neurodegeneration. Pectolinarin is an important flavone mainly found in Cirsium species. In this study, we explored the potential neuroprotective effect of pectolinarin in Aβ25-35 -induced SH-SY5Y cells. The result demonstrated that pectolinarin enhanced cell viability. Pectolinarin treatment inhibited Aβ25-35 -induced ROS generation. Pectolinarin also suppressed NO generation by inhibiting the translocation of NF-ĸB and downregulating protein expression of iNOS and COX-2. Moreover, the expression of Bcl-2 increased while BAX protein decreased when the cells were exposed to pectolinarin, resulting in a decrease in the BAX/Bcl-2 ratio. Pectolinarin treatment also increased BDNF and its receptor TrkB protein expression. In conclusion, pectolinarin neuroprotected Aβ25-35 -induced inflammation and apoptosis. These findings suggest that pectolinarin may be a promising neuroprotective functional food in the protection of the neurodegenerative diseases, including AD.
5.Pectolinarin Against Amyloid-beta-induced Neuroinflammation and Apoptosis In vitro
Mei Tong HE ; Byeong Wook NOH ; Hyun Young KIM ; Ah Young LEE ; Eun Ju CHO
Natural Product Sciences 2024;30(4):254-261
An excess of amyloid beta (Aβ) led to a rise in ROS production, which in turn caused inflammatory reactions and mitochondrial dysfunction, both of which accelerate the progression of Alzheimer’s disease (AD).Natural flavonoids are proposed as possible agents for neurodegeneration. Pectolinarin is an important flavone mainly found in Cirsium species. In this study, we explored the potential neuroprotective effect of pectolinarin in Aβ25-35 -induced SH-SY5Y cells. The result demonstrated that pectolinarin enhanced cell viability. Pectolinarin treatment inhibited Aβ25-35 -induced ROS generation. Pectolinarin also suppressed NO generation by inhibiting the translocation of NF-ĸB and downregulating protein expression of iNOS and COX-2. Moreover, the expression of Bcl-2 increased while BAX protein decreased when the cells were exposed to pectolinarin, resulting in a decrease in the BAX/Bcl-2 ratio. Pectolinarin treatment also increased BDNF and its receptor TrkB protein expression. In conclusion, pectolinarin neuroprotected Aβ25-35 -induced inflammation and apoptosis. These findings suggest that pectolinarin may be a promising neuroprotective functional food in the protection of the neurodegenerative diseases, including AD.
6.Pectolinarin Against Amyloid-beta-induced Neuroinflammation and Apoptosis In vitro
Mei Tong HE ; Byeong Wook NOH ; Hyun Young KIM ; Ah Young LEE ; Eun Ju CHO
Natural Product Sciences 2024;30(4):254-261
An excess of amyloid beta (Aβ) led to a rise in ROS production, which in turn caused inflammatory reactions and mitochondrial dysfunction, both of which accelerate the progression of Alzheimer’s disease (AD).Natural flavonoids are proposed as possible agents for neurodegeneration. Pectolinarin is an important flavone mainly found in Cirsium species. In this study, we explored the potential neuroprotective effect of pectolinarin in Aβ25-35 -induced SH-SY5Y cells. The result demonstrated that pectolinarin enhanced cell viability. Pectolinarin treatment inhibited Aβ25-35 -induced ROS generation. Pectolinarin also suppressed NO generation by inhibiting the translocation of NF-ĸB and downregulating protein expression of iNOS and COX-2. Moreover, the expression of Bcl-2 increased while BAX protein decreased when the cells were exposed to pectolinarin, resulting in a decrease in the BAX/Bcl-2 ratio. Pectolinarin treatment also increased BDNF and its receptor TrkB protein expression. In conclusion, pectolinarin neuroprotected Aβ25-35 -induced inflammation and apoptosis. These findings suggest that pectolinarin may be a promising neuroprotective functional food in the protection of the neurodegenerative diseases, including AD.
7.Carthamus tinctorius seeds–Taraxacum coreanum combination attenuates scopolamine-induced memory deficit through regulation of inflammatory response and cholinergic function
Mei Tong HE ; Yu-Su SHIN ; Hyun Young KIM ; Eun Ju CHO
Nutrition Research and Practice 2024;18(5):647-662
BACKGROUND/OBJECTIVES:
There is growing interest in herbal medicines for managing age-related diseases, such as Alzheimer's and Parkinson’s. Safflower seeds (Carthamus tinctorius L. seeds, CTS) and dandelions (Taraxacum coreanum, TC) are widely used to treat bone- or inflammation-related diseases in Oriental countries. This study investigated the protective effect of the CTS–TC combination on scopolamine (Sco)-induced memory deficits through inflammatory response and cholinergic function. Moreover, marker components such as serotonin, N-(p-coumaroyl) serotonin, N-feruloylserotonin, chlorogenic acid, and chicoric acid in the CTS–TC combination were analyzed for their potential benefits on memory function.MATERIALS/METHODS: Water extracts of CTS, TC, and the CTS–TC combination at various ratios (4:1, 1:1, and 1:4) (100 mg/kg) were orally administered to mice for 14 days. Sco (1 mg/kg) was intraperitoneally injected into the mice before each behavioral test. T-maze and novel object recognition tests were conducted to monitor behavioral changes after the treatment.Western blotting was performed to detect protein expression. In addition, the presence of 5 biomarkers, serotonin, N-(p-coumaroyl) serotonin, N-feruloylserotonin, chlorogenic acid, and chicoric acid, was analyzed using high-performance liquid chromatography (HPLC).
RESULTS:
Behavioral tests showed that the CTS–TC combination enhanced memory function in Sco-injected mice. Inflammation-related proteins (inducible nitric oxide synthase, cyclooxygenase-2, and glial fibrillary acidic protein) were downregulated after treatment with the CTS–TC combination. The acetylcholinesterase protein expression was also downregulated.HPLC analysis revealed that N-feruloylserotonin and chicoric acid were the predominant components, followed by N-(p-coumaroyl) serotonin, chlorogenic acid, and serotonin.
CONCLUSION
These findings suggest that the CTS–TC combination protects against Sco-induced memory deficits by inhibiting inflammatory responses and cholinergic dysfunction. N-feruloylserotonin and chicoric acid, along with N-(p-coumaroyl) serotonin, chlorogenic acid, and serotonin, might be biomarkers for the CTS–TC combination, and their effects on memory protection warrant further study.
8.Protective effect of Cordyceps militaris against hydrogen peroxide-induced oxidative stress in vitro
Mei Tong HE ; Ah Young LEE ; Chan Hum PARK ; Eun Ju CHO
Nutrition Research and Practice 2019;13(4):279-285
BACKGROUND/OBJECTIVES: Excessive production of reactive oxygen species (ROS) such as hydroxyl (·OH), nitric oxide (NO), and hydrogen peroxide (H2O2) is reported to induce oxidative stress. ROS generated by oxidative stress can potentially damage glial cells in the nervous system. Cordyceps militaris (CM), a kind of natural herb widely found in East Asia. In this study, we investigated the free radical scavenging activity of the CM extract and its neuroprotective effects in H2O2-induced C6 glial cells. MATERIALS/METHODS: The ethanol extract of CM (100–1,000 µg/mL) was used to measure DPPH, ·OH, and NO radical scavenging activities. In addition, hydrogen peroxide (H2O2)-induced C6 glial cells were treated with CM at 0.5–2.5 µg/mL for measurement of cell viability, ROS production, and protein expression resulting from oxidative stress. RESULTS: The CM extract showed high scavenging activities against DPPH, ·OH, and NO radicals at concentration of 1,000 µg/mL. Treatment of CM with H2O2-induced oxidative stress in C6 glial cells significantly increased cell viability, and decreased ROS production. Cyclooxygenase-2 and inducible nitric oxide synthase protein expression was down-regulated in CM-treated groups. In addition, the protein expression level of phospho-p38 mitogen-activated protein kinase (p-p38 MAPK), phospho-c-Jun N-terminal kinase (p-JNK), and phospho-extracellular regulated protein kinases (p-ERK) in H2O2-induced C6 glial cells was down-regulated upon CM administration. CONCLUSION: CM exhibited radical scavenging activity and protective effect against H2O2 as indicated by the increased cell viability, decreased ROS production, down-regulation of inflammation-related proteins as well as p-p38, p-JNK, and p-ERK protein levels. Therefore, we suggest that CM could play the protective role from oxidative stress in glial cells.
Cell Survival
;
Cordyceps
;
Cyclooxygenase 2
;
Down-Regulation
;
Ethanol
;
Far East
;
Free Radicals
;
Hydrogen Peroxide
;
Hydrogen
;
In Vitro Techniques
;
Nervous System
;
Neuroglia
;
Neuroprotective Agents
;
Nitric Oxide
;
Nitric Oxide Synthase Type II
;
Oxidative Stress
;
Phosphotransferases
;
Protein Kinases
;
Reactive Oxygen Species
10.Valproic Acid Regulates alpha-Synuclein Expression through JNK Pathway in Rat Primary Astrocytes.
Jung Nam KIM ; Min Kyeong KIM ; Kyu Suk CHO ; Chang Soon CHOI ; Seung Hwa PARK ; Sung Il YANG ; So Hyun JOO ; Jin Hee PARK ; Geonho BAHN ; Chan Young SHIN ; He Jin LEE ; Seol Heui HAN ; Kyoung Ja KWON
Biomolecules & Therapeutics 2013;21(3):222-228
Although the role of alpha-synuclein aggregation on Parkinson's disease is relatively well known, the physiological role and the regulatory mechanism governing the expression of alpha-synuclein are unclear yet. We recently reported that alpha-synuclein is expressed and secreted from cultured astrocytes. In this study, we investigated the effect of valproic acid (VPA), which has been suggested to provide neuroprotection by increasing alpha-synuclein in neuron, on alpha-synuclein expression in rat primary astrocytes. VPA concentration-dependently increased the protein expression level of alpha-synuclein in cultured rat primary astrocytes with concomitant increase in mRNA expression level. Likewise, the level of secreted alpha-synuclein was also increased by VPA. VPA increased the phosphorylation of Erk1/2 and JNK and pretreatment of a JNK inhibitor SP600125 prevented the VPA-induced increase in alpha-synuclein. Whether the increased alpha-synuclein in astrocytes is involved in the reported neuroprotective effects of VPA awaits further investigation.
Acetylation
;
alpha-Synuclein*
;
Animals
;
Astrocytes*
;
MAP Kinase Signaling System*
;
Neurons
;
Neuroprotective Agents
;
Parkinson Disease
;
Phosphorylation
;
Rats*
;
RNA, Messenger
;
Valproic Acid*

Result Analysis
Print
Save
E-mail