1.Pathogenesis and treatment progress of flap ischemia-reperfusion injury
Bo HE ; Wen CHEN ; Suilu MA ; Zhijun HE ; Yuan SONG ; Jinpeng LI ; Tao LIU ; Xiaotao WEI ; Weiwei WANG ; Jing XIE
Chinese Journal of Tissue Engineering Research 2025;29(6):1230-1238
BACKGROUND:Flap transplantation technique is a commonly used surgical procedure for the treatment of severe tissue defects,but postoperative flap necrosis is easily triggered by ischemia-reperfusion injury.Therefore,it is still an important research topic to improve the survival rate of transplanted flaps. OBJECTIVE:To review the pathogenesis and latest treatment progress of flap ischemia-reperfusion injury. METHODS:CNKI,WanFang Database and PubMed database were searched for relevant literature published from 2014 to 2024.The search terms used were"flap,ischemia-reperfusion injury,inflammatory response,oxidative stress,Ca2+overload,apoptosis,mesenchymal stem cells,platelet-rich plasma,signaling pathways,shock wave,pretreatment"in Chinese and English.After elimination of irrelevant literature,poor quality and obsolete literature,77 documents were finally included for review. RESULTS AND CONCLUSION:Flap ischemia/reperfusion injury may be related to pathological factors such as inflammatory response,oxidative stress response,Ca2+overload,and apoptosis,which can cause apoptosis of vascular endothelial cells,vascular damage and microcirculation disorders in the flap,and eventually lead to flap necrosis.Studies have found that mesenchymal stem cell transplantation,platelet-rich plasma,signaling pathway modulators,shock waves,and pretreatment can alleviate flap ischemia/reperfusion injuries from different aspects and to varying degrees,and reduce the necrosis rate and necrosis area of the grafted flap.Although there are many therapeutic methods for skin flap ischemia/reperfusion injury,a unified and effective therapeutic method has not yet been developed in the clinic,and the advantages and disadvantages of various therapeutic methods have not yet been compared.Most of the studies remain in the stage of animal experiments,rarely involving clinical observations.Therefore,a lot of research is required in the future to gradually move from animal experiments to the clinic in order to better serve the clinic.
2.Mitophagy regulates bone metabolism
Hanmin ZHU ; Song WANG ; Wenlin XIAO ; Wenjing ZHANG ; Xi ZHOU ; Ye HE ; Wei LI
Chinese Journal of Tissue Engineering Research 2025;29(8):1676-1683
BACKGROUND:In recent years,numerous studies have shown that autophagy and mitophagy play an important role in the regulation of bone metabolism.Under non-physiological conditions,mitophagy breaks the balance of bone metabolism and triggers metabolism disorders,which affect osteoblasts,osteoclasts,osteocytes,chondrocytes,bone marrow mesenchymal stem cells,etc. OBJECTIVE:To summarize the mechanism of mitophagy in regulating bone metabolic diseases and its application in clinical treatment. METHODS:PubMed,Web of Science,CNKI,WanFang and VIP databases were searched by computer using the keywords of"mitophagy,bone metabolism,osteoblasts,osteoclasts,osteocytes,chondrocytes,bone marrow mesenchymal stem cells"in English and Chinese.The search time was from 2008 to 2023.According to the inclusion criteria,90 articles were finally included for review and analysis. RESULTS AND CONCLUSION:Mitophagy promotes the generation of osteoblasts through SIRT1,PINK1/Parkin,FOXO3 and PI3K signaling pathways,while inhibiting osteoclast function through PINK1/Parkin and SIRT1 signaling pathways.Mitophagy leads to bone loss by increasing calcium phosphate particles and tissue protein kinase K in bone tissue.Mitophagy improves the function of chondrocytes through PINK1/Parkin,PI3K/AKT/mTOR and AMPK signaling pathways.Modulation of mitophagy shows great potential in the treatment of bone diseases,but there are still some issues to be further explored,such as different stages of drug-activated mitophagy,and the regulatory mechanisms of different signaling pathways.
3.Mahoniae Caulis Alkaloids Ameliorate Depression by Regulating Synaptic Plasticity via cAMP Pathway
Junhui HE ; Chunlian JIA ; Kedao LAI ; Guili ZHOU ; Rongfei ZHOU ; Yi LI ; Dongmei LI ; Jiaxiu XIE ; Guining WEI ; Juying ZHOU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):132-140
ObjectiveTo explore the mechanisms associated with Mahoniae Caulis alkaloids (MA) in ameliorating depression by network pharmacology, molecular docking, and animal experiments. MethodsThe component targets of MA were obtained through Swiss Target Prediction and TCMIP database. The depression targets were collected through TCMIP, Genecards, HPO, DrugBank and OMIM database. The depression targets were collected through TCMIP, Genecards, HPO, DrugBank and OMIM database. Protein-protein interaction (PPI) network was constructed by protein interaction analysis (STRING) database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed through Bioinformatics (DAVID) database. The docking of components and targets was performed by AGFR. The mouse model of depression was established by intraperitoneal injection of corticosterone (CORT) once a day for 35 consecutive days. Sixty mice were randomly allocated into control (0.9% normal saline), model (CORT, 20 mg·kg-1), positive control (fluoxetine hydrochloride, 3.6 mg·kg-1), and MA (10, 5, and 2.5 mg·kg-1) groups. Each group was administrated with corresponding medicine or normal saline once a day for 28 consecutive days. The depression-like behavior of mice was observed. The pathological changes of prefrontal cortex in mice were observed by hematoxylin-eosin staining. Terminal deoxynucleotidyl dUTP transferase nick end labeling (TUNEL) was employed to observe the apoptosis of neurons in the prefrontal cortex. Enzyme-linked immunosorbent assay was employed to assess the serum levels of brain-derived neurotrophic factor (BDNF), dopamine (DA), 5-hydroxytryptamine (5-HT), and norepinephrine (NE) in mice. The mRNA levels of cyclic adenosine monophosphate (cAMP) pathway-related factors and inflammatory factors were determined by Real-time PCR. Western blot was employed to determine the expression of cAMP pathway-related factors and connexin 43 (Cx43). ResultsA total of 434 component targets and 545 depression targets were obtained, including 84 common targets, among which 10 core targets were screened out. GO analysis predicted 34 biological processes, 15 cell components, and 11 molecular functions. The KEGG pathways were mainly related to gap junction and cAMP signaling pathway. The core components had good binding affinity with the core targets. The results of animal experiments showed that compared with the control group, CORT prolonged the immobility time of mice in forced swimming and tail suspension tests (P<0.01), lowered the serum levels of NE, BDNF, and 5-HT (P<0.05), up-regulated the mRNA levels of nuclear factor-κB (NF-κB) and interleukin-6 (IL-6) in the brain tissue (P<0.05), and down-regulated the mRNA levels of cyclic adenosine monophosphate effector binding protein (CREB) and BDNF (P<0.05) and the protein levels of protein kinase (PRKACA), phosphorylation (p)-CREB/CREB, BDNF, and Cx43 (P<0.05) in the brain tissue. Compared with the model group, high-dose MA reduced the immobility time of mice in forced swimming (P<0.05) and tail suspension (P<0.01) tests, raised the serum levels of NE, BDNF, and 5-HT (P<0.01), down-regulated the mRNA level of NF-κB (P<0.01), and up-regulated the mRNA level of BDNF (P<0.01) and protein levels of PRKACA, p-CREB/CREB, BDNF, and Cx43 (P<0.05). ConclusionMA alleviates the CORT-induced depressive behavior of mice. It may play an antidepressant role by regulating cAMP signaling pathway and gap junction pathway, improving synaptic plasticity and gap junction function, and reducing neuroinflammation.
4.Mahoniae Caulis Alkaloids Ameliorate Depression by Regulating Synaptic Plasticity via cAMP Pathway
Junhui HE ; Chunlian JIA ; Kedao LAI ; Guili ZHOU ; Rongfei ZHOU ; Yi LI ; Dongmei LI ; Jiaxiu XIE ; Guining WEI ; Juying ZHOU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):132-140
ObjectiveTo explore the mechanisms associated with Mahoniae Caulis alkaloids (MA) in ameliorating depression by network pharmacology, molecular docking, and animal experiments. MethodsThe component targets of MA were obtained through Swiss Target Prediction and TCMIP database. The depression targets were collected through TCMIP, Genecards, HPO, DrugBank and OMIM database. The depression targets were collected through TCMIP, Genecards, HPO, DrugBank and OMIM database. Protein-protein interaction (PPI) network was constructed by protein interaction analysis (STRING) database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed through Bioinformatics (DAVID) database. The docking of components and targets was performed by AGFR. The mouse model of depression was established by intraperitoneal injection of corticosterone (CORT) once a day for 35 consecutive days. Sixty mice were randomly allocated into control (0.9% normal saline), model (CORT, 20 mg·kg-1), positive control (fluoxetine hydrochloride, 3.6 mg·kg-1), and MA (10, 5, and 2.5 mg·kg-1) groups. Each group was administrated with corresponding medicine or normal saline once a day for 28 consecutive days. The depression-like behavior of mice was observed. The pathological changes of prefrontal cortex in mice were observed by hematoxylin-eosin staining. Terminal deoxynucleotidyl dUTP transferase nick end labeling (TUNEL) was employed to observe the apoptosis of neurons in the prefrontal cortex. Enzyme-linked immunosorbent assay was employed to assess the serum levels of brain-derived neurotrophic factor (BDNF), dopamine (DA), 5-hydroxytryptamine (5-HT), and norepinephrine (NE) in mice. The mRNA levels of cyclic adenosine monophosphate (cAMP) pathway-related factors and inflammatory factors were determined by Real-time PCR. Western blot was employed to determine the expression of cAMP pathway-related factors and connexin 43 (Cx43). ResultsA total of 434 component targets and 545 depression targets were obtained, including 84 common targets, among which 10 core targets were screened out. GO analysis predicted 34 biological processes, 15 cell components, and 11 molecular functions. The KEGG pathways were mainly related to gap junction and cAMP signaling pathway. The core components had good binding affinity with the core targets. The results of animal experiments showed that compared with the control group, CORT prolonged the immobility time of mice in forced swimming and tail suspension tests (P<0.01), lowered the serum levels of NE, BDNF, and 5-HT (P<0.05), up-regulated the mRNA levels of nuclear factor-κB (NF-κB) and interleukin-6 (IL-6) in the brain tissue (P<0.05), and down-regulated the mRNA levels of cyclic adenosine monophosphate effector binding protein (CREB) and BDNF (P<0.05) and the protein levels of protein kinase (PRKACA), phosphorylation (p)-CREB/CREB, BDNF, and Cx43 (P<0.05) in the brain tissue. Compared with the model group, high-dose MA reduced the immobility time of mice in forced swimming (P<0.05) and tail suspension (P<0.01) tests, raised the serum levels of NE, BDNF, and 5-HT (P<0.01), down-regulated the mRNA level of NF-κB (P<0.01), and up-regulated the mRNA level of BDNF (P<0.01) and protein levels of PRKACA, p-CREB/CREB, BDNF, and Cx43 (P<0.05). ConclusionMA alleviates the CORT-induced depressive behavior of mice. It may play an antidepressant role by regulating cAMP signaling pathway and gap junction pathway, improving synaptic plasticity and gap junction function, and reducing neuroinflammation.
5.Isorhamnetin Alleviates Inflammation-Induced Crosstalk between Kynurenine Pathway and Gut Microbiota in Depressed Mice
Mengjie XU ; Wei HE ; Ke YAN ; Xinru GAO ; Jun LI ; Dongyue XU ; Jiao XIAO ; Tingxu YAN
Biomolecules & Therapeutics 2025;33(2):297-310
Depression is a widespread psychiatric disorder with complex pathogenesis and unsatisfactory therapeutic effects. As a native flavonoid, Isorhamnetin (ISO) has been deemed to exert neuroprotective effects by antioxidation and regulation of immunity. However, no reports of anti-depressed effect of ISO have yet been found. The present study was conducted to clarify the mechanism basis of anti-depressed effect of ISO utilizing behavioral, biochemical, molecular approaches in vitro and in vivo and bio-informatics analysis. The effects of ISO on depressed mice was investigated through the SPT and FST, and the lesions were examined by H&E staining. Besides, the inflammatory factor and indicator in kynurenine pathway were assessed through detection kits, and the microbiota were checked by 16sRNA. Molecular docking study was performed to investigate the target of ISO. Additionally, Western blot was used to test the activation of PI3K/AKT signaling pathway. The results indicated that ISO could enhance the sugar water preference of mice in SPT and reduce immobility time in FST. Further more, ISO suppressed peripheral and central inflammation, regulated the changes in kynurenine pathway and gut microbiota, inhibited activation of PI3K/AKT pathway, and presented good binding patterns with target proteins on PI3K/AKT signaling pathway. Collectively, these findings demonstrate that ISO alleviated depression-like behaviour by normalizing inflammation-induced dysregulation of the crosstalk between KP and gut microbiota disorder through regulated PI3K/AKT/NF-κB pathway.
6.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
7.Isorhamnetin Alleviates Inflammation-Induced Crosstalk between Kynurenine Pathway and Gut Microbiota in Depressed Mice
Mengjie XU ; Wei HE ; Ke YAN ; Xinru GAO ; Jun LI ; Dongyue XU ; Jiao XIAO ; Tingxu YAN
Biomolecules & Therapeutics 2025;33(2):297-310
Depression is a widespread psychiatric disorder with complex pathogenesis and unsatisfactory therapeutic effects. As a native flavonoid, Isorhamnetin (ISO) has been deemed to exert neuroprotective effects by antioxidation and regulation of immunity. However, no reports of anti-depressed effect of ISO have yet been found. The present study was conducted to clarify the mechanism basis of anti-depressed effect of ISO utilizing behavioral, biochemical, molecular approaches in vitro and in vivo and bio-informatics analysis. The effects of ISO on depressed mice was investigated through the SPT and FST, and the lesions were examined by H&E staining. Besides, the inflammatory factor and indicator in kynurenine pathway were assessed through detection kits, and the microbiota were checked by 16sRNA. Molecular docking study was performed to investigate the target of ISO. Additionally, Western blot was used to test the activation of PI3K/AKT signaling pathway. The results indicated that ISO could enhance the sugar water preference of mice in SPT and reduce immobility time in FST. Further more, ISO suppressed peripheral and central inflammation, regulated the changes in kynurenine pathway and gut microbiota, inhibited activation of PI3K/AKT pathway, and presented good binding patterns with target proteins on PI3K/AKT signaling pathway. Collectively, these findings demonstrate that ISO alleviated depression-like behaviour by normalizing inflammation-induced dysregulation of the crosstalk between KP and gut microbiota disorder through regulated PI3K/AKT/NF-κB pathway.
8.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
9.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
10.The Chinese version of Chronic Illness Rejection and Discrimination Scale: reliability and validity in maintenance hemodialysis patients
Yingjia XU ; Wei HE ; Songhong XIE ; Mingya LI ; Fei HUANG
Sichuan Mental Health 2025;38(1):78-83
BackgroundPerceived discrimination has been identified as a main risk factor for depression in maintenance hemodialysis patients. Chronic Illness Rejection and Discrimination Scale (CIRDS) is a measure for assessing perceived discrimination in individuals with chronic disease. However, the Chinese version of CIRDS for maintenance hemodialysis patients has not yet been established. ObjectiveTo translate CIRDS into Chinese version and evaluate its reliability and validity in maintenance hemodialysis patients, so as to provide an effective tool for assessing the perceived discrimination among maintenance hemodialysis patients. MethodsThe Brislin's model for translation, back-translation, cross-cultural adaptation and pre-experimentation was utilized to develop a Chinese version of CIRDS. A coherent of 250 maintenance hemodialysis patients attending Taihe Hospital Affiliated to Hubei Medical College, from July to October 2023 were selected as the research subjects. The formal scale was refined by employing item analysis, exploratory factor analysis and confirmatory factor analysis. The validity of the scale was evaluated using content validity and construct validity. The reliability of the scale was evaluated using Cronbach's α coefficient, test-retest reliability and split-half reliability. ResultsThe Chinese version of CIRDS consisted of 11 items, including 2 factors (perceived discrimination and perceived rejection). The scale-level content validity index (S-CVI) value was 0.898 and the item-level content validity index (I-CVI) values ranged from 0.875 to 1.000. Two common factors were extracted by exploratory factor analysis and explained 65.41% of the total variance. Confirmatory factor analysis also indicated that the model provided a good fit for the data. The Cronbach's α coefficient of the scale was 0.910, with Cronbach's α coefficients of 0.835 and 0.912 for the perceived discrimination and perceived rejection, respectively. The split-half reliability of the scale was 0.803, and the test-retest reliability was 0.920. ConclusionThe Chinese version of CIRDS has excellent reliability and validity, which can be used to evaluate the perceived discrimination in maintenance hemodialysis patients.

Result Analysis
Print
Save
E-mail